1 |
DECAMP R W, HARDY R. Mission adaptive wing research programme[J]. Aircraft Engineering and Aerospace Technology, 1981, 53(1): 10-11.
|
2 |
DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]∥ 11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984.
|
3 |
BONNEMA K, SMITH S. AFTI/F-111 mission adaptive wing flight research program[C]∥ 4th Flight Test Conference. Reston: AIAA, 1988.
|
4 |
JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]∥ Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, 2004, 5388: 213-224.
|
5 |
PASTOR C, SANDERS B, JOO J J, et al. Kinematically designed flexible skins for morphing aircraft[C]∥ Proceedings of ASME 2006 International Mechanical Engineering Congress and Exposition, 2007: 89-95.
|
6 |
KUDVA J N, JARDINE A P, MARTIN C A, et al. Overview of the ARPA/WL “smart structures and materials development-smart wing” contract[C]∥ Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, 1996, 2721: 10-16.
|
7 |
KUDVA J N, APPA K, VAN WAY C B, et al. Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs[C]∥ Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies, 1995, 2447: 35-44.
|
8 |
BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 279-291.
|
9 |
HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
|
10 |
DI MATTEO N, GUO S J, AHMED S, et al. Design and analysis of a morphing flap structure for high lift wing[C]∥ 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010.
|
11 |
CAMPANILE L F. Modal synthesis of flexible mechanisms for airfoil shape control[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(7): 779-789.
|
12 |
SINAPIUS M, MONNER H P, KINTSCHER M, et al. DLR’s morphing wing activities within the European network[J]. Procedia IUTAM, 2014, 10: 416-426.
|
13 |
王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 024943.
|
|
WANG B W, YANG Y, QIAN Z S, et al. Research progress of variable camber wing technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 024943 (in Chinese).
|
14 |
刘世丽, 葛文杰, 李奎, 等. 基于杆索基结构的三维柔性变形机翼结构拓扑优化设计[J]. 机械科学与技术, 2008, 27(10): 1191-1194.
|
|
LIU S L, GE W J, LI K, et al. Optimal structural design of a three-dimensional morphing aircraft wing based on strut and cable ground structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(10): 1191-1194 (in Chinese).
|
15 |
李飞. 飞机自适应机翼的驱动机构研究[D]. 南京: 南京航空航天大学, 2009.
|
|
LI F. Research on adaptive wing structures based on NITI SMA actuator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
|
16 |
黄建. 新型零泊松比蜂窝结构力学性能及其变弯度机翼应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
HUANG J. Mechanical performances of a novel honeycomb design with zero Poisson’s ratio and its application in camber morphing wings[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
|
17 |
WU Y, DAI Y T, YANG C, et al. Effect of trailing-edge morphing on flow characteristics around a pitching airfoil[J]. AIAA Journal, 2021, 61(1): 160-173.
|
18 |
倪迎鸽, 侯赤, 万小朋, 等. 折叠机翼的参数化气动弹性建模与颤振分析[J]. 西北工业大学学报, 2015, 33(5): 788-793.
|
|
NI Y G, HOU C, WAN X P, et al. Parametric aeroelastic modeling and flutter analysis for a folding wing[J]. Journal of Northwestern Polytechnical University, 2015, 33(5): 788-793 (in Chinese).
|
19 |
ZHAO Y H, HU H Y. Parameterized aeroelastic modeling and flutter analysis for a folding wing[J]. Journal of Sound and Vibration, 2012, 331(2): 308-324.
|
20 |
ZHOU X H, HUANG R. Efficient nonlinear aeroelastic analysis of a morphing wing via parameterized fictitious mode method[J]. Nonlinear Dynamics, 2021, 105(1): 1-23.
|
21 |
ALBANO E, RODDEN W P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA Journal, 1969, 7(2): 279-285.
|
22 |
杨宁, 吴志刚, 杨超, 等. 折叠翼的结构非线性颤振分析[J]. 工程力学, 2012, 29(2): 197-204.
|
|
YANG N, WU Z G, YANG C, et al. Flutter analysis of a folding wing with structural nonlinearity[J]. Engineering Mechanics, 2012, 29(2): 197-204 (in Chinese).
|
23 |
刘艳. 连续变弯度后缘机翼静气动弹性分析及优化设计[D]. 西安: 西北工业大学, 2016.
|
|
LIU Y. Aeroelasticity analysis method and optimization design for aircraft wing with variable camber continuous trailing edge[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese).
|
24 |
吴优, 戴玉婷, 张仁嘉, 等. 连续变弯度翼型动态气动特性数值模拟[J]. 北京航空航天大学学报, 2021, 47(6): 1241-1253.
|
|
WU Y, DAI Y T, ZHANG R J, et al. Numerical simulation of dynamic aerodynamic characteristics of a camber morphing airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1241-1253 (in Chinese).
|
25 |
ZHOU Q, CHEN G, RONCH A DA, et al. Reduced order unsteady aerodynamic model of a rigid aerofoil in gust encounters[J]. Aerospace Science and Technology, 2017, 63: 203-213.
|
26 |
WINTER M, HECKMEIER F M, BREITSAMTER C. CFD-based aeroelastic reduced-order modeling robust to structural parameter variations[J]. Aerospace Science and Technology, 2017, 67: 13-30.
|
27 |
SEBER G, BENDIKSEN O O. Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation[J]. AIAA Journal, 2008, 46(6): 1331-1341.
|
28 |
LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617.
|
29 |
KENWAY G K W, MARTINS J R R A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1): 144-160.
|
30 |
郭同彪, 白俊强, 李立, 等. 民用客机变弯度机翼优化设计[J]. 中国科学: 技术科学, 2018, 48(1): 55-66.
|
|
GUO T B, BAI J Q, LI L, et al. The morphing trailing-edge wing optimization design of the civil aircraft[J]. Scientia Sinica (Technologica), 2018, 48(1): 55-66 (in Chinese).
|
31 |
JO Y, CHOI S, ZIENTARSKI L, et al. Aerodynamic characteristics and shape optimization of a variable camber compliant wing[C]∥ 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016.
|
32 |
梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3): 790-798.
|
|
LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 790-798 (in Chinese).
|
33 |
黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466.
|
|
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese).
|
34 |
KATZ J, PLOTKIN A. Low speed aerodynamics: From wing theory to panel methods[M]. New York: McGraw-Hill, 1991.
|
35 |
AMSALLEM D, CORTIAL J, CARLBERG K, et al. A method for interpolating on manifolds structural dynamics reduced-order models[J]. International Journal for Numerical Methods in Engineering, 2009, 80(9): 1241-1258.
|
36 |
AMSALLEM D, FARHAT C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7): 1803-1813.
|
37 |
詹玖榆, 周兴华, 黄锐. 基于流形切空间插值的折叠翼参数化气动弹性建模[J]. 力学学报, 2021, 53(4): 1103-1113.
|
|
ZHAN J Y, ZHOU X H, HUANG R. Parametric aeroelastic modeling of folding wing based on manifold tangent space interpolation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113 (in Chinese).
|
38 |
郭同庆. 复杂组合体跨音速非定常气动力和颤振计算[D]. 南京: 南京航空航天大学, 2006.
|
|
GUO T Q. Transonic unsteady aerodynamics and flutter computations for complex assemblies[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese).
|
39 |
YAO X J, HUANG R, HU H Y. Data-driven modeling of transonic unsteady flows and efficient analysis of fluid-structure stability[J]. Journal of Fluids and Structures, 2022, 111: 103549.
|