1 |
马益, 秦远田, 付国庆. 力限半经验系数研究[J]. 国外电子测量技术, 2017, 36(9): 86-90.
|
|
MA Y, QIN Y T, FU G Q. Research of force-limited vibration for semi-empirical coefficient[J]. Foreign Electronic Measurement Technology, 2017, 36(9): 86-90 (in Chinese).
|
2 |
MUSELLA U, D’ELIA G, CARRELLA A, et al. A minimum drives automatic target definition procedure for multi-axis random control testing[J]. Mechanical Systems and Signal Processing, 2018, 107: 452-468.
|
3 |
XIE Y M, SHI H, BI F X, et al. A MIMO data driven control to suppress structural vibrations[J]. Aerospace Science and Technology, 2018, 77: 429-438.
|
4 |
MAJI A, MOREU F, WOODALL J, et al. Error analyses of a Multi-Input-Multi-Output cantilever beam test[J]. Journal of Vibration and Control, 2022, 28(21-22): 3426-3437.
|
5 |
ZHENG R H, CHEN H H, VANDEPITTE D, et al. Generation of sine on random vibrations for multi-axial fatigue tests[J]. Mechanical Systems and Signal Processing, 2019, 126: 649-661.
|
6 |
D’ELIA G, MUSELLA U, MUCCHI E, et al. Analyses of drives power reduction techniques for multi-axis random vibration control tests[J]. Mechanical Systems and Signal Processing, 2020, 135: 106395.
|
7 |
郑威, 陈怀海. MIMO随机振动试验控制的逆多步预测模型法[J]. 航空学报, 2020, 41(2): 223000.
|
|
ZHENG W, CHEN H H. Inverse multi-step prediction model method for MIMO random vibration test control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223000 (in Chinese).
|
8 |
MA Y, CHEN H H, ZHENG R H. Control strategy for multi-axial swept sine on random mixed vibration testing[J]. Journal of Sound and Vibration, 2022, 527: 116846.
|
9 |
中国人民解放军总装备部. 军用装备实验室环境试验方法.第16部分: 振动试验: [S]. 北京: 中国人民解放军总装备部军标出版发行部,2009.
|
|
The General Armaments Department of the People’s Liberation Army. Laboratory environmental test methods for military material.Part 16: Vibration test: [S]. Beijing: The Chinese People’s Liberation Army General Armaments Department Military Standard Publication Distribution Department Press, 2009 (in Chinese).
|
10 |
Department of Defense Test Method Standard. Environmental engineering considerations and laboratory tests: MIL-S [S].Washington,D.C.:US Department of Defense,2019.
|
11 |
张步云. 多输入多输出扫频及混合型振动试验控制系统研究[D]. 南京: 南京航空航天大学, 2014: 59-81.
|
|
ZHANG B Y. Research on multi-input multi-output sweep frequency and hybrid vibration test control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 59-81 (in Chinese) .
|
12 |
孟韩, 黄海, 黄舟. 多自由度非高斯随机振动控制[J]. 航空学报, 2017, 38(2): 220465.
|
|
MENG H, HUANG H, HUANG Z. Multi-degree-of-freedom non-Gaussian random vibration control[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 220465 (in Chinese).
|
13 |
郑荣慧, 陈怀海, 贺旭东, 等. 一种多输入多输出非高斯随机振动试验方法[J]. 振动工程学报, 2017, 30(5): 697-702.
|
|
ZHENG R H, CHEN H H, HE X D, et al. A method for MIMO non-Gaussian random vibration test[J]. Journal of Vibration Engineering, 2017, 30(5): 697-702 (in Chinese).
|
14 |
SHENG X Q, FAN W L, YANG X Y, et al. Auxiliary harmonic excitation generalized method for random vibration analysis of linear structures under non-stationary Gaussian excitation[J]. Mechanical Systems and Signal Processing, 2022, 172: 108958.
|
15 |
SMALLWOOD D O. Generating non-Gaussian vibration for testing purposes[J]. Sound and Vibration, 2005, 39(10): 18-24.
|
16 |
ZHENG R H, CHEN H H, VANDEPITTE D, et al. Multi-exciter stationary non-Gaussian random vibration test with time domain randomization[J]. Mechanical Systems and Signal Processing, 2019, 122: 103-116.
|
17 |
STEINWOLF A. Approximation and simulation of probability distributions with a variable kurtosis value[J]. Computational Statistics & Data Analysis, 1996, 21(2): 163-180.
|
18 |
STEINWOLF A. Random vibration testing with kurtosis control by IFFT phase manipulation[J]. Mechanical Systems and Signal Processing, 2012, 28: 561-573.
|
19 |
陈家焱, 陈章位, 周建川, 等. 基于泊松过程的超高斯随机振动试验控制技术研究[J]. 振动与冲击, 2012, 31(6): 19-22, 41.
|
|
CHEN J Y, CHEN Z W, ZHOU J C, et al. Super-Gaussian random vibration test control technique based on Poisson process[J]. Journal of Vibration and Shock, 2012, 31(6): 19-22, 41 (in Chinese).
|
20 |
吴家驹, 张鹏飞, 胡亚冰. 非高斯随机振动的分析基础[J]. 强度与环境, 2018, 45(2): 1-8.
|
|
WU J J, ZHANG P F, HU Y B. Analytical basis for the synthesis of non-Gaussian random vibration[J]. Structure & Environment Engineering, 2018, 45(2): 1-8 (in Chinese).
|
21 |
夏静, 袁宏杰, 徐如远. 一种新的非高斯随机振动信号的模拟方法[J]. 北京航空航天大学学报, 2019, 45(2): 366-372.
|
|
XIA J, YUAN H J, XU R Y. A new simulation method of non-Gaussian random vibration signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 366-372 (in Chinese).
|
22 |
朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击, 2020, 39(16): 96-102, 134.
|
|
ZHU D P. Time-dependent reliability analysis of package under non-Gaussian excitation[J]. Journal of Vibration and Shock, 2020, 39(16): 96-102, 134 (in Chinese).
|
23 |
JACQUELIN E, BENNANI A, HAMELIN P. Force reconstruction: analysis and regularization of a deconvolution problem[J]. Journal of Sound and Vibration, 2003, 265(1): 81-107.
|