1 |
NIGEN J S, AMON C H. Effect of material composition and localized heat generation on time-dependent conjugate heat transport[J]. International Journal of Heat and Mass Transfer, 1995, 38(9): 1565-1576.
|
2 |
WANG C Y. Fundamental models for fuel cell engineering[J]. Chemical Reviews, 2004, 104(10): 4727-4766.
|
3 |
FIEBIG M, GROSSE-GORGEMANN A, CHEN Y, et al. Conjugate heat transfer of a finned tube Part A: Heat transfer behavior and occurrence of heat transfer reversal[J]. Numerical Heat Transfer, Part A: Applications, 1995, 28(2): 133-146.
|
4 |
KORICHI A, OUFER L. Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls[J]. International Journal of Thermal Sciences, 2005, 44(7): 644-655.
|
5 |
JUNCU G. Conjugate heat/mass transfer from a circular cylinder with an internal heat/mass source in laminar crossflow at low Reynolds numbers[J]. International Journal of Heat and Mass Transfer, 2005, 48(2): 419-424.
|
6 |
WANG J K, WANG M R, LI Z X. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J]. International Journal of Thermal Sciences, 2007, 46(3): 228-234.
|
7 |
TAROKH A, MOHAMAD A A, JIANG L. Simulation of conjugate heat transfer using the lattice boltzmann method[J]. Numerical Heat Transfer, Part A: Applications, 2013, 63(3): 159-178.
|
8 |
GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389.
|
9 |
MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.
|
10 |
DALRYMPLE R A, ROGERS B D. Numerical modeling of water waves with the SPH method[J]. Coastal Engineering, 2006, 53(2-3): 141-147.
|
11 |
BOREGOWDA P, LIU G R. On the accuracy of SPH formulations with boundary integral terms[J]. Mathematics and Computers in Simulation, 2023, 210: 320-345.
|
12 |
张锁春, AUCHMUTY G. 常微分方程自治系统周期解的变分原理和数值计算方法[J].数值计算与计算机应用, 1989, 10(3): 141-148.
|
|
ZHANG S C, AUCHMUTY G. Variational principle and numerical calculation method for periodic solutions of autonomous systems of ordinary differential equations[J]. Journal on Numerical Methods and Computer Applications, 1989, 10(3): 141-148 (in Chinese).
|
13 |
龚凯, 刘桦, 王本龙. SPH固壁边界处理方法的改进[J]. 力学季刊, 2008, 29(4): 507-514.
|
|
GONG K, LIU H, WANG B L. An improved boundary treatment approach for SPH method[J]. Chinese Quarterly of Mechanics, 2008, 29(4): 507-514 (in Chinese).
|
14 |
张卫杰, 高玉峰, 黄雨, 等. 水土耦合SPH数值模型的正则化修正及其应用[J]. 岩土工程学报, 2018, 40(2): 262-269.
|
|
ZHANG W J, GAO Y F, HUANG Y, et al. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262-269 (in Chinese).
|
15 |
张力方, 张建民. SPH方法与LBM方法在溃坝水流模拟中的对比研究[J]. 中国农村水利水电, 2020(10): 236-241.
|
|
ZHANG L F, ZHANG J M. A comparative study of SPH and LBM methods for numerical simulation of dam-break flow[J]. China Rural Water and Hydropower, 2020(10): 236-241 (in Chinese).
|
16 |
CLEARY P W. Modelling confined multi-material heat and mass flows using SPH[J]. Applied Mathematical Modelling, 1998, 22(12): 981-993.
|
17 |
SZEWC K, POZORSKI J, TANIÈRE A. Modeling of natural convection with Smoothed Particle Hydrodynamics: Non-Boussinesq formulation[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24): 4807-4816.
|
18 |
DANIS M E, ORHAN M, ECDER A. ISPH modelling of transient natural convection[J]. International Journal of Computational Fluid Dynamics, 2013, 27(1): 15-31.
|
19 |
童长青, 何雅玲, 王勇, 等. 封闭方腔自然对流的格子-Boltzmann方法动态模拟[J]. 西安交通大学学报, 2007, 41(5): 32-36.
|
|
TONG C Q, HE Y L, WANG Y, et al. Dynamic simulation of natural convection in close square cavity using lattice-Boltzmann method[J]. Journal of Xi’an Jiaotong University, 2007, 41(5): 32-36 (in Chinese).
|
20 |
HU Z L, ZHANG H H, WANG J, et al. Heuristic optimality criterion algorithm for topology optimization of conjugate heat transfer problem[J]. International Journal of Thermal Sciences, 2024, 200: 108949.
|
21 |
D’ORAZIO A, CORCIONE M, CELATA G P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6): 575-586.
|
22 |
DE VAHL DAVIS G. Natural convection of air in a square cavity: A bench mark numerical solution[J]. International Journal for Numerical Methods in Fluids, 1983, 3(3): 249-264.
|
23 |
BARAKOS G, MITSOULIS E, ASSIMACOPOULOS D. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions[J]. International Journal for Numerical Methods in Fluids, 1994, 18(7): 695-719.
|
24 |
ALSABERY A I, NAGANTHRAN K, AZIZUL F M, et al. Numerical study of conjugate natural convection heat transfer of a blood filled horizontal concentric annulus[J]. International Communications in Heat and Mass Transfer, 2020, 114: 104568.
|
25 |
KUEHN T H, GOLDSTEIN R J. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders[J]. Journal of Fluid Mechanics, 1976, 74: 695-719.
|
26 |
HOUSE J M, BECKERMANN C, SMITH T F. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 213-225.
|
27 |
BRAGA E J, DE LEMOS M J S. Laminar natural convection in cavities filled with circular and square rods[J]. International Communications in Heat and Mass Transfer, 2005, 32(10): 1289-1297.
|
28 |
MERRIKH A, LAGE J L. Effect of distributing a fixed amount of solid constituent inside a porous medium enclosure on the heat transfer process[C]∥HEITOR R A, MIGUEL A F. Proceedings of the International Conference on Applications of Porous Media. Évora: Évora Geophysics Center and Department of Physics, University of Évora, 2005: 51-57.
|
29 |
LU J H, LEI H Y, DAI C S. A unified thermal lattice Boltzmann equation for conjugate heat transfer problem[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1275-1286.
|
30 |
MERRIKH A A, LAGE J L. Natural convection in an enclosure with disconnected and conducting solid blocks[J]. International Journal of Heat and Mass Transfer, 2005, 48(7): 1361-1372.
|
31 |
RAJI A, HASNAOUI M, NAÏMI M, et al. Effect of the subdivision of an obstacle on the natural convection heat transfer in a square cavity[J]. Computers & Fluids, 2012, 68: 1-15.
|
32 |
KARANI H, HUBER C. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(2): 023304.
|
33 |
LU J H, LEI H Y, DAI C S. A simple difference method for lattice Boltzmann algorithm to simulate conjugate heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 114: 268-276.
|
34 |
HA M Y, JUNG M. Numerical study on transient heat transfer and fluid flow of natural convection in an enclosure with a heat-generating conducting body[J]. Numerical Heat Transfer Part A-Applications, 1999, 35(4): 415-433.
|
35 |
HA M Y, JUNG M J. A numerical study on three-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body[J]. International Journal of Heat and Mass Transfer, 2000, 43(23): 4229-4248.
|