1 |
DEB K, SAXEAN D. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems[C]∥ Piscataway: IEEE Press, 2006: 3352-3360.
|
2 |
ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization: A short review[C]∥ 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Piscataway: IEEE Press, 2008: 2419-2426.
|
3 |
PURSHOUSE R C, FLEMING P J. Evolutionary many-objective optimisation: An exploratory analysis[C]∥ The 2003 Congress on Evolutionary Computation. Piscataway: IEEE Press, 2003: 2066-2073.
|
4 |
SATO H, AGUIRRE H E, TANAKA K. Controlling dominance area of solutions and its impact on the performance of MOEAs[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 5-20.
|
5 |
DRECHSLER N, DRECHSLER R, BECKER B. Multi-objective optimisation based on relation favour[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2001: 154-166.
|
6 |
KUKKONEN S, LAMPINEN J. Ranking-dominance and many-objective optimization[C]∥ 2007 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, Press 2007: 3983-3990.
|
7 |
WAGNER T, BEUME N, NAUJOKS B. Pareto-, aggregation-, and indicator-based methods in many-objective optimization[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 742-756.
|
8 |
HUGHES E J. Evolutionary many-objective optimisation: Many once or one many?[C]∥ 2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2005 : 222-227.
|
9 |
ISHIBUCHI H, DOI T, NOJIMA Y. Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms[C]∥ Parallel Problem Solving from Nature - PPSN IX. Berlin: Springer, 2006: 493-502.
|
10 |
ISHIBUCHI H, NOJIMA Y. Optimization of scalarizing functions through evolutionary multiobjective optimization [C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 51-65.
|
11 |
DEB K, SUNDAR J. Reference point based multi-objective optimization using evolutionary algorithms [C]∥ Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 635-642.
|
12 |
BROCKHOFF D, ZITZLER E. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective Optimization[C]∥ Parallel Problem Solving from Nature - PPSN IX. Berlin: Springer, 2006: 533-542.
|
13 |
JAIMES A L, COELLO COELLO C A, CHAKRABORTY D. Objective reduction using a feature selection technique[C]∥ Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2008: 673-680.
|
14 |
DEB K, SAXENA D K. On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems [R]. Kanpur: Indian Institute of Technology, 2005.
|
15 |
SINGH H K, ISAACS A, RAY T. A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(4): 539-556.
|
16 |
ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552.
|
17 |
HUANG J T, ZHU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1336-1348.
|
18 |
SAXENA D K, DURO J A, TIWARI A, et al. Objective reduction in many-objective optimization: Linear and nonlinear algorithms[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(1): 77-99.
|
19 |
ZHAO H, GAO Z H, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(3): 685-732.
|
20 |
ZHAO H, GAO Z H. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations, 2019, 36(3): 971-996.
|
21 |
赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1): 124894.
|
|
ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124894 (in Chinese).
|
22 |
ZHAO H, GUO Z H, XU F, et al. An efficient adaptive forward-backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 456-491.
|
23 |
PALAR P S, SHIMOYAMA K. On efficient global optimization via universal Kriging surrogate models[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2377-2397.
|
24 |
ZHAO H, GAO Z H, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858.
|
25 |
SCHOBI R, SUDRET B, WIART J. Polynomial-chaos-based kriging[J]. International Journal for Uncertainty Quantification, 2015, 5(2): 171-193.
|
26 |
TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
|
27 |
WEINBERGER K Q, SAUL L K. Unsupervised learning of image manifolds by semidefinite programming[J]. International Journal of Computer Vision, 2006, 70(1): 77-90.
|
28 |
SAXENA D K, DEB K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding[C]∥ Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 772-787.
|
29 |
STURM J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones[J]. Optimization Methods and Software, 1999, 11: 625-653.
|
30 |
KEANE A J. Statistical improvement criteria for use in multiobjective design optimization[J]. AIAA Journal, 2006, 44(4): 879-891.
|
31 |
BAUTISTA D C T. A sequential design for approximating the pareto front using the expected pareto improvement function[M]. Columbus: The Ohio State University, 2009.
|
32 |
ZITZLER E. Evolutionary algorithms for multiobjective optimization: Methods and applications[M]. Ithaca: Shaker, 1999.
|
33 |
KNOWLES J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66.
|
34 |
ZHAN D W, CHENG Y S, LIU J. Expected improvement matrix-based infill criteria for expensive multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 956-975.
|
35 |
ZHAN D W, QIAN J C, LIU J, et al. Pseudo expected improvement matrix criteria for parallel expensive multi-objective optimization[C]∥ World Congress of Structural and Multidisciplinary. Cham: Springer, 2017: 175-190.
|
36 |
赵欢,高正红,夏露 .基于新型高维代理模型的气动外形设计方法研究[J].航空学报, 2023, 44(1): 126924.
|
|
ZHAO H, GAO Z H, XIA L, et al. Research on novel high-dimensional surrogate model-based aerodynamic shape design optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 126924 (in Chinese).
|
37 |
ZHAO H, GUO Z H, XIA L. Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model[J]. Computers & Fluids, 2022, 246: 105643
|
38 |
赵欢. 基于自适应多可信度多项式混沌-Kriging模型的高效气动优化方法[J]. 力学学报, 2023, 55(1): 1-16.
|
|
ZHAO H. Adaptive multi-fidelity polynomial chaos-kriging model-based efficient aerodynamic design optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 1-16 (in Chinese).
|