汪松柏1,2, 陈勇1, 吴亚东1(), 张少平2, 曹志鹏2
收稿日期:
2022-09-23
修回日期:
2022-11-01
接受日期:
2022-11-25
出版日期:
2023-09-15
发布日期:
2022-12-06
通讯作者:
吴亚东
E-mail:yadongwu@sjtu.edu.cn
基金资助:
Songbai WANG1,2, Yong CHEN1, Yadong WU1(), Shaoping ZHANG2, Zhipeng CAO2
Received:
2022-09-23
Revised:
2022-11-01
Accepted:
2022-11-25
Online:
2023-09-15
Published:
2022-12-06
Contact:
Yadong WU
E-mail:yadongwu@sjtu.edu.cn
Supported by:
摘要:
航空发动机非定常流固热声耦合问题涉及发动机性能、适航性和安全性等多个方面,是高性能航空发动机自主研制中不可回避的重要难题。转子叶片非同步振动是航空发动机压气机中出现的一类新的气动弹性问题,涉及多学科交叉。随着压气机气动负荷不断提高和叶片阻尼的下降,新研制的高性能压气机暴露出非同步振动问题,导致叶片振动应力超限,其引发的叶片断裂故障也屡见不鲜,但对其产生机制和控制方法尚未完全摸清。梳理和总结了国内外轴流压气机叶片非同步振动现象和特征,对转子叶片非同步振动的产生机制、影响因素、抑制方法的研究进展进行了回顾,旨在扩展压气机内不稳定流动诱发叶片非同步振动方面的基础理论认知,为先进航空发动机自主设计研制和故障分析诊断提供技术储备,并对该领域未来的发展进行了展望。
中图分类号:
汪松柏, 陈勇, 吴亚东, 张少平, 曹志鹏. 轴流压气机转子叶片非同步振动研究进展[J]. 航空学报, 2023, 44(17): 28044-028044.
Songbai WANG, Yong CHEN, Yadong WU, Shaoping ZHANG, Zhipeng CAO. Research progress on non-synchronous vibration of axial compressor rotor blade[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 28044-028044.
1 | 李清华, 安利平, 徐林, 等. 高负荷轴流压气机设计与试验验证[J]. 航空学报, 2017, 38(9): 520990. |
LI Q H, AN L P, XU L, et al. Design and test verification of high load axial-flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 520990 (in Chinese). | |
2 | VAHDATI M, ZHAO F Z, SURESHKUMAR P. An overview of time-domain computational methods for aeroelastic instabilities of multi-stage compressors[J]. Journal of the Global Power and Propulsion Society, 2020, 4: 114-127. |
3 | HAN L, WEI D S, WANG Y R, et al. Analysis method of nonsynchronous vibration and influence of tip clearance flow instabilities on nonsynchronous vibration in an axial transonic compressor rotor[J]. Journal of Turbomachinery, 2021, 143(11): 111014. |
4 | HEGDE S, ZORI L, CAMPREGHER R, et al. Separation of wake and potential field excitations in an embedded compressor rotor: Impact of wave reflections and mistuning on forced response:AIAA-2021-0265[R]. Reston: AIAA, 2021. |
5 | 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391. |
CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391 (in Chinese). | |
6 | 吴亚东, 李涛. 压气机旋转不稳定性的研究进展[J]. 推进技术, 2021, 42(1): 68-81. |
WU Y D, LI T. Research progress on rotating instability of compressor[J]. Journal of Propulsion Technology, 2021, 42(1): 68-81 (in Chinese). | |
7 | YANG W C, WANG Y R, HAN L,et al.Effect of rotating instabilities on aerodynamic damping of axial flow fan blades[C]∥ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019: 90651. |
8 | DEPPE A, SAATHOFF H, STARK U. Spike-type stall inception in axial-flow compressors[C]∥Proceedings of 6th European Conference on Turbomachinery-Fluid Dynamics and Thermodynamics. 2005. |
9 | VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[C]∥ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2005: 155-156. |
10 | GARRISON B. High cycle fatigue (HCF) 2000 annual report[R]. Washington: High Cycle Fatigue (HCF) Science and Technology Program, 2000:1-4. |
11 | U.S. Department of Defense. General specification for aircraft turbojet, turbofan, turboshaft and turboprop engine:JSSG-87231A [S]. Washington, D.C.: U.S. Department of Defense, 1995: 1-370. |
12 | Air Force U.S.. Engine structural integrity program (ENSIP): MIL-H [S]. Washington, D.C.:U.S. Air Force, 2002: 1-115. |
13 | 李其汉. 航空发动机结构完整性研究进展[J]. 航空发动机, 2014, 40(5): 1-6. |
LI Q H. Investigation progress on aeroengine structural integrity[J]. Aeroengine, 2014, 40(5): 1-6 (in Chinese). | |
14 | HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance[J]. Journal of Turbomachinery, 2016, 138(4): 041001. |
15 | 林左鸣, 李克安, 杨胜群. 航空发动机压气机转子叶片声激振试验研究[J]. 动力学与控制学报, 2010, 8(1): 12-18. |
LIN Z M, LI K A, YANG S Q. Experimental research on sound waves excitation to aero-engine compressor rotor blade[J]. Journal of Dynamics and Control, 2010, 8(1): 12-18 (in Chinese). | |
16 | 赵奉同, 景晓东, 沙云东, 等. 压气机内部噪声特征与转子叶片声固耦合机理分析[J]. 航空学报, 2019, 40(5): 122669. |
ZHAO F T, JING X D, SHA Y D, et al. Analysis of noise characteristics and acoustic structure coupling mechanism of rotor blades in compressor[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122669 (in Chinese). | |
17 | 梁东, 王同庆. 低速风扇气动旋转不稳定性问题的实验研究[J]. 燃气涡轮试验与研究, 2013, 26(3): 12-16. |
LIANG D, WANG T Q. Experimental research on rotating instability of the low speed fan[J]. Gas Turbine Experiment and Research, 2013, 26(3): 12-16 (in Chinese). | |
18 | BAUMGARTNER M, KAMEIER F, HOURMOUZI ADIS J. Non-engine order blade vibration in a high pressure compressor[C]∥12th International Symposium on Airbreathing Engines. 1995. |
19 | KIELB R E, BARTER J W, THOMAS J P, et al. Blade excitation by aerodynamic instabilities: A compressor blade study[C]∥ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. New York: ASME, 2003: 399-406. |
20 | VIGNAU-TUQUET F, GIRARDEAU D. Aerodynamic rotating vortex instability in a multi-stage axial compressor[C]∥17th International Symposium on AirBreathing Engines. 2005: 1-8. |
21 | JÜNGST M, HOLZINGER F, SCHIFFER H P, et al. Analysing non-synchronous blade vibration in a transonic compressor rotor[C]∥11th European Conference on Turbomachinery Fluid Dynamic & Thermodynamics. 2015. |
22 | 武卉, 杨明绥, 王德友, 等. 多动态参数同步测试系统构建及其应用[J]. 航空学报, 2014, 35(2): 391-399. |
WU H, YANG M S, WANG D Y, et al. Construction and application of synchronized test system of multi-dynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 391-399 (in Chinese). | |
23 | 杨明绥, 刘思远, 王德友, 等. 航空发动机压气机声共振现象初探[J]. 航空发动机, 2012, 38(5): 36-42. |
YANG M S, LIU S Y, WANG D Y, et al. Study of acoustic resonance for aeroengine compressors[J]. Aeroengine, 2012, 38(5): 36-42 (in Chinese). | |
24 | LIU Y X, MO D, DU Q, et al. Numerical simulation and experimental investigation on flutter and non-synchronous vibration[C]∥32nd Congress of the International Council of the Aeronautical Sciences. 2021. |
25 | GAO F L, YANG M S, ZHANG Z B, et al. Experiment and theoretical analysis of a type of non-synchronous vibration in a high pressure compressor[C]∥32nd Congress of the International Council of the Aeronautical Sciences. 2021. |
26 | GAN J Y, IM H S, ZHA G C. Numerical examination of lock-in hypothesis of non-synchronous vibration in an axial compressor[C]∥ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017: 65244. |
27 | GAN J Y, IM H S, ESPINAL D, et al. Investigation of a compressor rotor non-synchronous vibration with and without fluid-structure interaction[C]∥ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014: 26478. |
28 | SANDERS A J. Nonsynchronous vibration (NSV) due to a flow-induced aerodynamic instability in a composite fan stator[J]. Journal of Turbomachinery, 2005, 127(2): 412-421. |
29 | ZHU X C, HU P, LIN T, et al. Numerical investigations on non-synchronous vibration and frequency lock-in of low-pressure steam turbine last stage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(4): 647-661. |
30 | STAPELFELDT S, BRANDSTETTER C. Non-synchronous vibration in axial compressors: Lock-in mechanism and semi-analytical model[J]. Journal of Sound and Vibration, 2020, 488: 115649. |
31 | KAMEIER F. Experimentelle untersuchung zur entstehung und minderung des blattspitzen-wirbellarms axialer stromungsmaschinen[D]. Berlin:Technical University of Berlin, 1993. |
32 | KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery, 1997, 119(3): 460-471. |
33 | MAILACH R. Experimental investigation of rotating instabilities in a low speed research compressor[C]∥ Third European Conference on Turbomachinery – Fluid Dynamics and Thermodynamics. 1999. |
34 | MAILACH R, SAUER H, VOGELER K. The periodical interaction of the tip clearance flow in the blade rows of axial compressors[C]∥ASME Turbo Expo 2001: Power for Land, Sea, and Air. New York: ASME, 2001:0299. |
35 | MAILACH R, LEHMANN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2001, 123(3): 453-460. |
36 | WANG H, WU Y D, OUYANG H A, et al. Investigations of rotating instability and fluctuating tip clearance flow in a low-speed axial compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(6): 981-994. |
37 | WANG H, WU Y D, YUE S Y, et al. Numerical investigation on the flow mechanism of multi-peak frequency feature of rotating instability[J]. Journal of Thermal Science, 2021, 30(2): 668-681. |
38 | TIAN J, YAO D, WU Y D, et al. Experimental study on rotating instability mode characteristics of axial compressor tip flow[J]. Experiments in Fluids, 2018, 59(4). |
39 | MÄRZ J, NEISE W. On the structure of rotating instabilities in axial flow machines[C]∥ Proceedings of the 14th International Symposium on Air Breathing Engines.1999. |
40 | MÄRZ J, HAH C, NEISE W. An experimental and numerical investigation into the mechanisms of rotating instability[C]∥ASME Turbo Expo 2001: Power for Land, Sea, and Air. New York: ASME, 2001: 0536. |
41 | VO H D. Role of tip clearance flow on axial compressor stability[D]. Cambridge: Massachusetts Institute of Technology, 2001. |
42 | PATEL P, YANG Y C, ZHA G C. Improved delayed detached eddy simulation (IDDES) of a 1.5 stage axial compressor non-synchronous vibration[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020: 15073. |
43 | IM H S, ZHA G C. Investigation of non-synchronous vibration mechanism for a high speed axial compressor using delayed DES[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
44 | IM H S, ZHA G C. Investigation of flow instability mechanism causing compressor rotor-blade nonsynchronous vibration[J]. AIAA Journal, 2014, 52(9): 2019-2031. |
45 | HAN L, WEI D S, WANG Y R, et al. Lock-in phenomenon of tip clearance flow and its influence on aerodynamic damping under specified vibration on an axial transonic compressor rotor[J]. Chinese Journal of Aeronautics, 2022, 35(3): 185-200. |
46 | HAN L, WEI D S, WANG Y R, et al. Locked-in phenomenon between tip clearance flow instabilities and enforced blade motion in axial transonic compressor rotors[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.New York: ASME,2020:16050. |
47 | 汪松柏, 张少平, 余华蔚, 等. 高负荷压气机旋转不稳定诱发转子叶片非同步振动的实验研究[J]. 推进技术, 2023, 44(2): 82-89. |
WANG S B, ZHANG S P, YU H W, et al. Experimental research on rotor blade non-synchronous vibrations induced by rotating instability of high load compressor[J]. Journal of Propulsion Technology, 2023, 44(2): 82-89 (in Chinese). | |
48 | NEUHAUS L, NEISE W. Active flow control to improve the aerodynamic and acoustic performance of axial turbomachines: AIAA-2002-2948[R]. Reston: AIAA, 2002. |
49 | NEUHAUS L, SCHULZ J, NEISE W, et al. Active control of the aerodynamic performance and tonal noise of axial turbomachines[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 375-383. |
50 | YAMAGUCHI N, SATO T, UMEMURA S, et al. A non-synchronous vibration of moving blades coupled with the bleed chamber resonance in an axial compressor[M]∥Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers. New York: Springer New York, 1993: 829-842. |
51 | VO H D. Role of tip clearance flow in the generation of non-synchronous vibrations: AIAA-2006-0629[R]. Reston: AIAA, 2006. |
52 | THOMASSIN J, VO H D, MUREITHI N W. Blade tip clearance flow and compressor NSV: The jet core feedback theory as the coupling mechanism[C]∥ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 619-628. |
53 | HO C M, NOSSEIR N S. Dynamics of an impinging jet. Part 1. The feedback phenomenon[J]. Journal of Fluid Mechanics, 1981, 105: 119-142. |
54 | THOMASSIN J, VO H D, MUREITHI N W. Experimental demonstration of the tip clearance flow resonance behind compressor non-synchronous vibration[C]∥ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 653-664. |
55 | GYSLING D, GREITZER E.Dynamic control of rotating stall in axial flow compressors using aeromechanical feedback[C]∥ ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition.New York: ASME,1994. |
56 | THOMASSIN J, VO H D, MUREITHI N W. The tip clearance flow resonance behind axial compressor nonsynchronous vibration[J]. Journal of Turbomachinery, 2011, 133(4): 041030. |
57 | 刘权峰. 轴流式压气机叶片非同步振动的气固耦合理论及试验研究[D]. 沈阳: 东北大学, 2012. |
LIU Q F. The gas-solid coupling mechanism and experiment research of axial-flow compressor blades non-synchronous vibrations[D]. Shenyang: Northeastern University, 2012 (in Chinese). | |
58 | DROLET M, VO H D, MUREITHI N W.Effect of tip clearance on the prediction of nonsynchronous vibrations in axial compressors[J].Journal of Turbomachinery,2013, 135(1): 011023. |
59 | DROLET M, THOMASSIN J, VO H D, et al. Numerical investigation into non-synchronous vibrations of axial flow compressors by the resonant tip clearance flow[C]∥ ASME Turbo Expo 2009: Power for Land, Sea, and Air.New York: ASME, 2009: 487-498. |
60 | PLATZER M F, CARTA F O. AGARD manual on aeroelasticity in axial-flow turbomachines. Volume 2. Structural dynamics and aeroelasticity: AGARD-AG-298-VOL-2[R]. France: Advisory Group for Aerospace Research and Development,1988. |
61 | CLARK S T, KIELB R E, HALL K C. Developing a reduced-order model to understand non-synchronous vibration in turbomachinery[C]∥ ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2012: 1373-1382. |
62 | 周迪, 王晓宇, 陈俊, 等. 转子叶栅非同步振荡发声特性研究[J]. 航空学报, 2015, 36(3): 737-748. |
ZHOU D, WANG X Y, CHEN J, et al. Investigation of sound generation by non-synchronously vibrating rotor blades[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 737-748 (in Chinese). | |
63 | FIQUET A L, BRANDSTETTER C, AUBERT S, et al. Non-synchronous aeroacoustic interaction in an axial multi-stage compressor[J]. Journal of Turbomachinery, 2019, 141(10): 101013. |
64 | LEW P T, GOPALAKRISHNAN P, CASALINO D, et al. An extended lattice Boltzmann methodology for high subsonic jet noise prediction: AIAA-2014-2755[R]. Reston: AIAA, 2014. |
65 | 李杨. 周向前弯叶片对轴流风扇气动声学性能影响[J]. 航空动力学报, 2009, 24(7): 1606-1609. |
LI Y. Effect of circumferential forward-skewed blade on aeroacoustic performance of axial fan[J]. Journal of Aerospace Power, 2009, 24(7): 1606-1609 (in Chinese). | |
66 | JU H B. Effects of vane sweep on fan-wake/outlet-guide-vane interaction broadband noise: AIAA-2016-2948 [R]. Reston: AIAA, 2016. |
67 | CAMP T R. A study of acoustic resonance in a low-speed multistage compressor[J]. Journal of Turbomachinery, 1999, 121(1): 36-43. |
68 | HELLMICH B, SEUME J R. Causes of acoustic resonance in a high-speed axial compressor[J]. Journal of Turbomachinery, 2008, 130(3): 031003. |
69 | SCHUSTER B. Axial fan tone noise induced by separated tip flow, flutter, and forced response: AIAA-2005-2876 [R]. Reston: AIAA, 2005. |
70 | BRANDSTETTER C, PAOLETTI B, OTTAVY X. Acoustic and convective mechanisms contributing to non-synchronous-vibrations in a multistage compressor[C]∥ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME,2019: 91514. |
71 | FIQUET A L, AUBERT S, BRANDSTETTER C, et al. Acoustic resonance in an axial multistage compressor leading to non-synchronous blade vibration[J]. Journal of Turbomachinery, 2021, 143(9): 091014. |
72 | 栾孝驰, 沙云东, 赵奉同. 轴流压气机转子叶片非同步振动的声传播特征研究[J]. 机械设计与制造, 2020(4): 99-105. |
LUAN X C, SHA Y D, ZHAO F T. Investigation into the characteristics of sound propagation corresponding to non-synchronous vibration of rotor blades in an axial compressor[J]. Machinery Design & Manufacture, 2020(4): 99-105 (in Chinese). | |
73 | 栾孝驰, 沙云东, 赵奉同, 等. 多级轴流压气机内部噪声测试及频谱演化特征分析[J]. 沈阳航空航天大学学报, 2012, 29(4): 10-15. |
LUAN X C, SHA Y D, ZHAO F T, et al. Measurement and frequency spectrum characteristics analysis of the inner noise from a multi-stage axial compressor[J]. Journal of Shenyang Aerospace University, 2012, 29(4): 10-15 (in Chinese). | |
74 | ZIADA S, OENGÖREN A, VOGEL A. Acoustic resonance in the inlet scroll of a turbo-compressor[J]. Journal of Fluids and Structures, 2002, 16(3): 361-373. |
75 | KÖNIG S, PETRY N. Parker-type acoustic resonances in the return guide vane cascade of a centrifugal compressor – theoretical modeling and experimental verification[J]. Journal of Turbomachinery, 2012, 134(6): 061029. |
76 | 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11): 023139. |
HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023139 (in Chinese). | |
77 | IM H S, ZHA G C. Effects of rotor tip clearance on tip clearance flow potentially leading to NSV in an axial compressor[C]∥ ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2012: 1383-1394. |
78 | 赖生智, 吴亚东, 田杰, 等. 不同叶顶间隙下压气机旋转不稳定性特性[J]. 上海交通大学学报, 2020, 54(3): 265-276. |
LAI S Z, WU Y D, TIAN J, et al. Rotating instability characteristics in compressor with different tip clearances[J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 265-276 (in Chinese). | |
79 | JÜNGST M, LIEDTKE S, SCHIFFER H P, et al. Aerodynamic effects in a transonic compressor with nonaxisymmetric tip clearance[C]∥ ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. New York: ASME, 2018: 75404. |
80 | DONG X, ZHANG Y J, ZHANG Z Q, et al. Effect of tip clearance on the aeroelastic stability of a wide-chord fan rotor[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(9): 091010. |
81 | MÜTSCHARD S, WERNER J, KARL M, et al. Overview of unsteady phenomena emerging in a stalled 1.5-stage transonic compressor[C]∥ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021: 58828. |
82 | LU Y Z, LAD B, VAHDATI M. Transonic fan blade redesign approach to attenuate nonsynchronous vibration[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020: 14646. |
83 | LU Y Z, LAD B, VAHDATI M, et al. Nonsynchronous vibration associated with transonic fan blade untwist[C]∥ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019: 91286. |
84 | STAPELFELDT S, VAHDATI M. Improving the flutter margin of an unstable fan blade[J]. Journal of Turbomachinery, 2019, 141(7): 071006. |
85 | 刘一雄, 陈育志, 丛佩红, 等. 静子叶片角度对颤振影响数值仿真及试验研究[J]. 工程热物理学报, 2022, 43(6): 1519-1527. |
LIU Y X, CHEN Y Z, CONG P H, et al. Numerical simulation and experimental validation of the influences of stator angle on fan blade flutter[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1519-1527 (in Chinese). | |
86 | SUN W, ZHU M W, WANG Z. Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints[J]. Aerospace Science and Technology, 2017, 63: 232-244. |
87 | RIVAS-GUERRA A J, MIGNOLET M P. Local/global effects of mistuning on the forced response of bladed disks[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(1): 131-141. |
88 | BESEM F M, KIELB R E, KEY N L. Forced response sensitivity of a mistuned rotor from an embedded compressor stage[J]. Journal of Turbomachinery, 2016, 138(3): 031002. |
89 | LIM S H, PIERRE C, CASTANIER M P. Predicting blade stress levels directly from reduced-order vibration models of mistuned bladed disks[J]. Journal of Turbomachinery, 2006, 128(1): 206-210. |
90 | BRANDSTETTER C, PAOLETTI B, OTTAVY X. Compressible modal instability onset in an aerodynamically mistuned transonic fan[J]. Journal of Turbomachinery, 2019, 141(3): 031004. |
91 | KAZA K R V, KIELB R E. Flutter and response of a mistuned cascade in incompressible flow[J]. AIAA Journal, 1982, 20(8): 1120-1127. |
92 | BEIROW B, GIERSCH T, KÜHHORN A, et al. Forced response analysis of a mistuned compressor blisk[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(6): 062507. |
93 | BEIROW B, KÜHHORN A, FIGASCHEWSKY F, et al. Effect of mistuning and damping on the forced response of a compressor blisk rotor[C]∥ ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015: 42036. |
94 | 刘一雄, 陈育志, 丛佩红, 等. 失谐设计在叶片自激振动减振中的应用[J]. 航空发动机, 2020, 46(5): 86-91. |
LIU Y X, CHEN Y Z, CONG P H, et al. Application of mistuned design in vibration reduction of blade self-excited vibration[J]. Aeroengine, 2020, 46(5): 86-91 (in Chinese). | |
95 | SLADOJEVIĆ I, SAYMA A I, IMREGUN M. Influence of stagger angle variation on aerodynamic damping and frequency shifts[C]∥ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 683-700. |
96 | STÜER H, SCHMITT S, ASHCROFT G. Aerodynamic mistuning of structurally coupled blades[C]∥ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 643-651. |
97 | MALZACHER L, MOTTA V, SCHWARZE C, et al. Experimental investigation of an aerodynamically mistuned oscillating compressor cascade[C]∥ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. New York: ASME, 2018: 75025. |
98 | EKICI K, KIELB R E, HALL K C. Aerodynamic asymmetry analysis of unsteady flows in turbomachinery[J]. Journal of Turbomachinery, 2010, 132(1): 011006. |
99 | EKICI K, KIELB R E, HALL K C. The effect of aerodynamic asymmetries on turbomachinery flutter[J]. Journal of Fluids and Structures, 2013, 36: 1-17. |
100 | KUMAR S S, BHANUDASJI ALONE D B, THIMMAIAH S M, et al. Aeroelastic aspects of axial compressor stage with self-recirculating casing treatment[J]. Journal of Turbomachinery, 2022, 144(6): 061008. |
101 | KUMAR S S, BHANUDASJI ALONE D, THIMMAIAH S M, et al. Aerodynamic behavior of a transonic axial flow compressor stage with self-recirculating casing treatment[J]. Aerospace Science and Technology, 2021, 112: 106587. |
102 | MÖLLER D, JÜNGST M, SCHIFFER H P, et al. Influence of rotor tip blockage on near stall blade vibrations in an axial compressor rig[J]. Journal of Turbomachinery, 2018, 140(2): 021007. |
103 | HOLZINGER F, WARTZEK F, JÜNGST M, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Rotating instabilities and flutter[J]. Journal of Turbomachinery, 2016, 138(4): 041006. |
104 | 吴亚东, 李涛, 张永杰. 基于圆弧斜缝处理机匣的压气机叶顶泄漏流实验和数值研究[J]. 上海交通大学学报, 2020, 54(7): 745-755. |
WU Y D, LI T, ZHANG Y J. Experimental and numerical study of compressor tip leakage flow based on arc-curve skewed slot casing treatment[J]. Journal of Shanghai Jiao Tong University, 2020, 54(7): 745-755 (in Chinese). | |
105 | YE S B, ZHAO Q J, ZHOU X Y, et al. The impact of circumferential casing grooves on rotating instability in a transonic axial compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(8): 2868-2893. |
106 | LU Y Z, VAHDATI M. Detecting nonsynchronous vibration in transonic fans using machine learning techniques[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020: 14261. |
107 | JOLY M, SARKAR S, MEHTA D. Machine learning enabled adaptive optimization of a transonic compressor rotor with precompression[J]. Journal of Turbomachinery, 2019, 141(5): 051011. |
108 | 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4): 524686. |
REN F, GAO C Q, TANG H. Machine learning for flow control: Applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524686 (in Chinese). |
[1] | 张程, 任浩源, 史泰龙, 戴雯迪. 含非线性连接的折叠舵全时域多学科耦合分析方法及应用[J]. 航空学报, 2023, 44(S2): 729461-729461. |
[2] | 陈浩宇, 王彬文, 宋巧治, 李晓东. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295-227295. |
[3] | 喻世杰, 周兴华, 黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析[J]. 航空学报, 2023, 44(8): 227346-227346. |
[4] | 王培涵, 吴志刚, 杨超, 孙晓旭. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报, 2023, 44(6): 127038-127038. |
[5] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[6] | 王梓伊, 张伟伟, 刘磊, 杨肖峰. 适用于复杂流动的热气动弹性降阶建模方法[J]. 航空学报, 2023, 44(4): 126807-126807. |
[7] | 王立波, 荆志伟, 唐矗. 波阵风中的弹性飞机动力学建模与仿真[J]. 航空学报, 2023, 44(17): 228214-228214. |
[8] | 程荣辉, 余华蔚, 汪松柏, 杜林, 孙大坤, 孙晓峰. 多级压气机转子负荷系数对叶片非同步振动的影响[J]. 航空学报, 2023, 44(14): 628722-628722. |
[9] | 郑锋, 黄薇, 季宏丽, 裘进浩. 复合材料薄板结构中的声学黑洞效应探究[J]. 航空学报, 2023, 44(1): 426453-426453. |
[10] | 周宜涛, 杨阳, 吴志刚, 杨超. 大展弦比无人机平台的阵风减缓飞行试验[J]. 航空学报, 2022, 43(6): 526126-526126. |
[11] | 侯英昱, 李齐, 季辰, 刘子强. 超声速低频大抖振气动弹性载荷试验[J]. 航空学报, 2022, 43(3): 626454-626454. |
[12] | 郭秋亭, 孙岩, 郭正, 刘光远. 风洞试验雷诺数/静气动弹性效应分离方法[J]. 航空学报, 2022, 43(11): 526312-526312. |
[13] | 杨超, 邱祈生, 周宜涛, 吴志刚. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350-527350. |
[14] | 王昕江, 刘子强, 郭力, 付志超, 吕计男. 基于功能原理的颤振模态参与度分析方法[J]. 航空学报, 2022, 43(1): 224920-224920. |
[15] | 孙岩, 王昊, 江盟, 岳皓, 孟德虹. NNW-FSI软件静气动弹性耦合加速策略设计与实现[J]. 航空学报, 2021, 42(9): 625738-625738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学