任浩源, 王毅(), 王亮, 周剑波, 常汉江, 蔡毅鹏, 雷豹, 张炜群
收稿日期:
2022-08-16
修回日期:
2022-09-15
接受日期:
2022-12-13
出版日期:
2023-07-25
发布日期:
2022-12-22
通讯作者:
王毅
E-mail:ywangcalt@163.com
基金资助:
Haoyuan REN, Yi WANG(), Liang WANG, Jianbo ZHOU, Hanjiang CHANG, Yipeng CAI, Bao LEI, Weiqun ZHANG
Received:
2022-08-16
Revised:
2022-09-15
Accepted:
2022-12-13
Online:
2023-07-25
Published:
2022-12-22
Contact:
Yi WANG
E-mail:ywangcalt@163.com
Supported by:
摘要:
为了适装新型发射平台和进一步提高射程能力,高速飞行器需要采用折叠翼/舵的方案。高速飞行器面临的严酷高温环境和时变气动载荷条件,使折叠舵的结构动力学特性更加复杂,给开展折叠舵极端条件下热气动弹性特性的准确分析带来严峻挑战。本文构建了综合考虑温度、载荷、机构间隙和摩擦特性等因素的折叠机构力学模型,通过非线性有限元分析获得了不同因素影响下的连接刚度,并开展常温和高温试验验证研究。基于固有模态对结构进行降维简化,基于修正的三阶活塞理论建立了气动力模型,采用准定常模型对特定飞行剖面的颤振特性进行评估。基于Abaqus结构模型和STAR-CCM+气动模型,开展了时域响应分析。结果表明:常温和高温条件下,折叠机构转动刚度的计算结果与试验结果整体相对误差小于10%,具有较好的一致性,验证了模型的准确性和可用性;采用CFD与CSD耦合计算方法获得的临界颤振速度低于采用修正的三阶活塞理论结果,CFD/CSD耦合计算方法更加保守。本文建立的方法可为飞行器舵面颤振特性进行有效预示,对新型高速飞行器设计具有重要指导作用。
中图分类号:
任浩源, 王毅, 王亮, 周剑波, 常汉江, 蔡毅鹏, 雷豹, 张炜群. 基于热/力试验的折叠舵连接刚度与颤振分析[J]. 航空学报, 2023, 44(14): 227927-227927.
Haoyuan REN, Yi WANG, Liang WANG, Jianbo ZHOU, Hanjiang CHANG, Yipeng CAI, Bao LEI, Weiqun ZHANG. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227927-227927.
表 2
不同载荷作用下转轴和锁紧销位置的位移及等效支撑刚度(常温条件)
工况 | 载荷值/N | 转轴区域 | 锁紧销区域 | ||
---|---|---|---|---|---|
位移/mm | 刚度/(107N·m-1) | 位移/mm | 刚度/(107N·m-1) | ||
1 | 100 | 9.090 9 | 4.434 7 | ||
2 | 200 | 0.001 1 | 9.090 9 | 0.002 2 | 4.656 2 |
3 | 300 | 0.002 2 | 9.413 5 | 0.004 3 | 4.843 9 |
4 | 500 | 0.004 2 | 10.059 2 | 0.008 3 | 5.920 6 |
5 | 1 000 | 0.009 1 | 10.570 5 | 0.015 | 8.347 9 |
6 | 2 000 | 0.018 | 11.548 1 | 0.025 3 | 10.442 5 |
7 | 5 000 | 0.042 2 | 12.838 3 | 0.049 9 | 13.289 4 |
8 | 10 000 | 0.079 2 | 13.810 0 | 0.083 7 | 15.612 5 |
9 | 20 000 | 0.148 8 | 14.925 6 | 0.142 4 | 18.459 1 |
表 3
不同温度下转轴和锁紧销位置的等效支撑刚度
序号 | 载荷值 /N | 转轴区域刚度kaxis/(107N·m-1) | 锁紧销区域刚度kpin/(107N·m-1) | ||||
---|---|---|---|---|---|---|---|
300 ℃ | 500 ℃ | 700 ℃ | 300 ℃ | 500 ℃ | 700 ℃ | ||
1 | 100 | 8.651 8 | 8.092 1 | 7.568 3 | 4.286 8 | 4.051 4 | 3.861 0 |
2 | 200 | 8.892 0 | 8.301 3 | 7.816 3 | 4.492 9 | 4.250 8 | 4.059 8 |
3 | 300 | 9.094 0 | 8.503 0 | 8.025 1 | 4.665 3 | 4.433 4 | 4.266 8 |
4 | 500 | 9.415 4 | 8.842 9 | 8.345 4 | 5.753 9 | 5.582 3 | 5.431 3 |
5 | 1 000 | 10.077 0 | 9.476 2 | 8.968 5 | 8.074 3 | 7.798 7 | 7.495 8 |
6 | 2 000 | 10.937 7 | 10.300 3 | 9.755 4 | 9.996 0 | 9.497 3 | 9.022 1 |
7 | 5 000 | 12.214 6 | 11.486 5 | 10.869 3 | 12.732 1 | 12.034 8 | 11.414 2 |
8 | 10 000 | 13.125 3 | 12.361 7 | 11.701 0 | 14.899 2 | 14.017 8 | 13.209 5 |
9 | 20 000 | 14.197 1 | 13.478 1 | 12.829 8 | 17.520 9 | 16.372 7 | 15.337 5 |
表 4
折叠机构连接刚度Kθ的计算值、试验值及相对误差
Mx /(N·m) | KθT/(104N·m·rad-1) | KθE1/(104N·m·rad-1) | R1/% | KθE2/(104N·m·rad-1) | R2/% | KθE3/(104N·m·rad-1) | R3/% |
---|---|---|---|---|---|---|---|
145 | 3.258 0 | 4.449 3 | 36.6 | 4.283 5 | 31.5 | 5.452 3 | 67.4 |
290 | 3.634 1 | 4.074 6 | 12.1 | 4.059 6 | 11.7 | 4.594 6 | 26.4 |
435 | 3.846 4 | 3.942 8 | 2.5 | 3.904 0 | 1.5 | 3.920 2 | 1.9 |
580 | 3.892 7 | 4.109 9 | 5.6 | 3.840 6 | -1.3 | 3.789 6 | -2.6 |
725 | 3.898 0 | 4.087 2 | 4.9 | 3.856 8 | -1.1 | 3.751 6 | -3.8 |
870 | 3.903 3 | 4.024 4 | 3.1 | 3.919 7 | 0.4 | 3.456 9 | -11.4 |
1 015 | 3.908 7 | 4.314 3 | 10.4 | 4.133 9 | 5.8 | 3.739 2 | -4.3 |
1 160 | 3.908 7 | 4.686 4 | 19.9 | 4.445 3 | 13.7 | 3.853 2 | -1.4 |
1 305 | 3.914 1 | 4.750 5 | 21.4 | 4.565 4 | 16.6 | 3.590 1 | -8.3 |
1 450 | 3.919 4 | 4.700 8 | 19.9 | 4.488 6 | 14.5 | 3.847 6 | -1.8 |
1 595 | 3.924 8 | 4.671 5 | 19.0 | 4.466 4 | 13.8 | 3.813 8 | -2.8 |
1 740 | 3.935 6 | 4.529 4 | 15.1 | 4.563 2 | 15.9 | 3.409 9 | -13.4 |
1 | HEALY F, CHEUNG R C, NEOFET T, et al. Folding wingtips for improved roll performance[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
2 | FRANCESCO D C, ROBERTO S, ROBERTO F, et al. Design optimization of interfacing attachments for the deployable wing of an unmanned re-entry vehicle[J]. Algorithms, 2021, 14(5): 141. |
3 | 宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制[J]. 力学学报, 2020, 52(6): 1548-1559. |
SONG H X, JIN L. Dynamic modeling and stability control of folding wing aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559 (in Chinese). | |
4 | DUSSART G X, LONE M M, O'ROURKE C, et al. In-flight folding wingtip system: inspiration from the XB-70 Valkyrie[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
5 | 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报, 2021, 42(8): 525793. |
CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525793 (in Chinese). | |
6 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
7 | LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
8 | 王强, 马志赛, 张欣, 等. 基于模态综合法的含间隙折叠舵面动态特性分析[J]. 航空学报, 2020, 41(5): 223507. |
WANG Q, MA Z S, ZHANG X, et al. Dynamic characteristic analysis for a folding fin with freeplay nonlinearities based on mode synthesis method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 223507 (in Chinese). | |
9 | XIE C C, CHEN Z Y, AN C. Aeroelastic response of a Z-shaped folding wing during the morphing process[J]. AIAA Journal, 2022, 60(5): 3166-3179. |
10 | LIU B, LIANG H, HAN Z H, et al. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range[J]. Aerospace Science and Technology, 2022, 124: 107557. |
11 | PADMANABHAN M A, DOWELL E H. Computational study of aeroelastic response due to freeplay and flight loads[J]. AIAA Journal, 2021, 59(7): 2793-2799. |
12 | FONZI N, RICCI S, LIVNE E. Numerical and experimental investigations on freeplay-based LCO phenomena on a T-Tail model[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
13 | PANCHAL J, BENAROYA H. Review of control surface freeplay[J]. Progress in Aerospace Sciences, 2021, 127: 100729. |
14 | 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019: 8-14. |
GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019: 8-14 (in Chinese). | |
15 | 王翔宇. 非线性结构气动弹性系统的动力学与控制[D]. 北京: 北京航空航天大学, 2021. |
WANG X Y. Dynamic and control for an aeroelastic system with concentrated structural nonlinearities[D]. Beijing: Beihang University, 2021 (in Chinese). | |
16 | AJAJ R, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
17 | LIVNE E. Aircraft active flutter suppression: State of the art and technology maturation needs[J]. Journal of Aircraft, 2017, 55(1): 410-452. |
18 | 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466. |
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese). | |
19 | 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033. |
YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033 (in Chinese). | |
20 | HU W, YANG Z C, GU Y S. Aeroelastic study for folding wing during the morphing process[J]. Journal of Sound and Vibration, 2016, 365: 216-229. |
21 | HU W, YANG Z C, GU Y S, et al. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness[J]. Journal of Sound and Vibration, 2017, 400: 22-39. |
22 | CHEUNG R C, WALES C, REZGUI D, et al. Modelling of folding wing-tip devices for gust loads alleviation[C]∥ 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
23 | CHEUNG R C, REZGUI D, COOPER J E, et al. Testing of folding wing-tip for gust load alleviation in high aspect ratio wing[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
24 | CONTI C, SALTARI F, MASTRODDI F, et al. Quasi-steady aeroelastic analysis of the semi-aeroelastic hinge including geometric nonlinearities[J]. Journal of Aircraft, 2021, 58(5): 1168-1178. |
25 | HE H N, TANG H, YU K P, et al. Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2357-2371. |
26 | LAMORTE N, FRIEDMANN P P, GLAZ B, et al. Uncertainty propagation in hypersonic aerothermoelastic analysis[J]. Journal of Aircraft, 2014, 51(1): 192-203. |
27 | 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350. |
YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527350 (in Chinese). | |
28 | LIU Z H, LI Z H, MA Q, et al. Thermo-mechanical coupling behavior of plate structure under re-entry aerodynamic environment[J]. International Journal of Mechanical Sciences, 2022, 218: 107066. |
29 | WU J, XU Q Y, ZHANG Z, et al. Aeroelastic characteristics of inflatable reentry vehicle in transonic and supersonic regions[J]. Computers & Fluids, 2022, 237: 105338. |
30 | HUANG C D, HUANG J C, SONG X P, et al. Three dimensional aeroelastic analyses considering free-play nonlinearity using computational fluid dynamics/computational structural dynamics coupling[J]. Journal of Sound and Vibration, 2021, 494: 115896. |
31 | 马砾, 招启军, 赵蒙蒙, 等. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 120762. |
MA L, ZHAO Q J, ZHAO M M, et al. Computation analyses of aeroelastic loads of rotor based on CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120762 (in Chinese). | |
32 | CHEN F, LIU H, ZHANG S T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J]. Aerospace Science and Technology, 2018, 78: 620-636. |
33 | 沈恩楠, 郭同庆, 吴江鹏, 等. 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021, 42(8): 525773. |
SHEN E N, GUO T Q, WU J P, et al. Full-time coupling method and application of a hypersonic all-movable wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525773 (in Chinese). | |
34 | 刘桐林. 世界导弹大全[M]. 北京: 军事科学出版社, 1998: 137-138. |
LIU T L. World missile encyclopedia[M]. Beijing: Military Science Press, 1998: 137-138 (in Chinese). | |
35 | 余旭东, 徐超, 郑晓亚. 飞行器结构设计[M]. 西安: 西北工业大学出版社, 2010: 178-185. |
YU X D, XU C, ZHENG X Y. Structural design for aircraft [M]. Xi'an: Northwestern Polytechnical University Press, 2010: 178-185 (in Chinese). | |
36 | 陈克, 金玲, 雷豹, 等. 基于高温合金的高速飞行器折叠舵结构设计与研究[J/OL]. 航空兵器, (2022-04-07)[2022-08-15]. . |
CHEN K, JIN L, LEI B, et al. Design and research of high-speed aircraft folding rudder structure based on high temperature alloy [J/OL]. Aero Weaponry, (2022-04-07)[2022-08-15]. (in Chinese). | |
37 | WRIGGERS P. Computational contact mechanics[M]. 2nd ed. Berlin: Springer, 2006: 109-153. |
38 | 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 666-685. |
WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 666-685 (in Chinese). | |
39 | 任浩源, 王毅, 王亮, 等. 航天飞行器折叠翼锁紧机构力学模型[J/OL].航空动力学报, (2022-07-12)[2022-08-15]. . |
REN H Y, WANG Y, WANG L, et al. Mechanical model of locking mechanisms of folding wing for spacecraft [J/OL]. Journal of Aerospace Power, (2022-07-12)[2022-08-15]. (in Chinese). | |
40 | 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004: 134-136. |
CHEN G B, ZOU C Q, YANG C. Design of aeroelasticity[M]. Beijing: Beihang University Press, 2004: 134-136 (in Chinese). | |
41 | 王乐, 王毅, 南宫自军. 活塞理论及其改进方法在超声速翼面颤振分析中的应用[J]. 导弹与航天运载技术, 2011(4): 13-17. |
WANG L, WANG Y, NANGONG Z J. Application of piston theory and its improved methods to the analysis of supersonic wing flutter[J]. Missiles and Space Vehicles, 2011(4): 13-17 (in Chinese). | |
42 | 王乐, 朱辰, 周剑波. 空气舵系统连接刚度识别及颤振模态跟踪方法[J]. 战术导弹技术, 2017(2): 52-57. |
WANG L, ZHU C, ZHOU J B. Method of joint stiffness identification and flutter mode tracking of air rudder system[J]. Tactical Missile Technology, 2017(2): 52-57 (in Chinese). | |
43 | CINOSI N, WALKER S P, BLUCK M J, et al. CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+[J]. Nuclear Engineering and Design, 2014, 279: 37-49. |
44 | FRIEDMANN P P, MCNAMARA J J, THURUTHIMATTAM B J, et al. Aeroelastic analysis of hypersonic vehicles[J]. Journal of Fluids and Structures, 2004, 19(5): 681-712. |
45 | THURUTHIMATTAM B, FRIEDMANN P, POWELL K, et al. Aeroelasticity of a generic hypersonic vehicle[C]∥ 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. |
46 | SPAIN C, ZEILER T, BULLOCK E, et al. A flutter investigation of all-moveable NASP-like wings at hypersonic speeds[C]∥ 34th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1993. |
47 | MCNAMARA J J, FRIEDMANN P P, POWELL K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J]. AIAA Journal, 2008, 46(10): 2591-2610. |
[1] | 李国强, 宋奎辉, 覃晨, 赵光银, 吴霖鑫, 杨永东. 基于后缘小翼的翼型动态失速主动控制试验[J]. 航空学报, 2024, 45(3): 128699-128699. |
[2] | 张桂玮, 刘召庆, 朱镭, 张衡, 田玮, 李伟光, 杨智春. 地面颤振模拟试验技术研究进展[J]. 航空学报, 2024, 45(10): 29229-029229. |
[3] | 张程, 任浩源, 史泰龙, 戴雯迪. 含非线性连接的折叠舵全时域多学科耦合分析方法及应用[J]. 航空学报, 2023, 44(S2): 729461-729461. |
[4] | 陈浩宇, 王彬文, 宋巧治, 李晓东. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295-227295. |
[5] | 喻世杰, 周兴华, 黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析[J]. 航空学报, 2023, 44(8): 227346-227346. |
[6] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[7] | 王梓伊, 张伟伟, 刘磊, 杨肖峰. 适用于复杂流动的热气动弹性降阶建模方法[J]. 航空学报, 2023, 44(4): 126807-126807. |
[8] | 王涛, 高雪峰, 祝景萍, 董松, 孙连军, 郑侃. 机器人纵扭超声铣边颤振在线监测方法[J]. 航空学报, 2023, 44(13): 262-272. |
[9] | 李益文, 邓朝晖, 刘涛, 卓荣锦, 李重阳, 吕黎曙. 切削加工过程中颤振在线监测研究综述[J]. 航空学报, 2023, 44(11): 27562-027562. |
[10] | 廖文和, 郑侃, 孙连军, 董松, 张磊. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(1): 26061-026061. |
[11] | 王昕江, 刘子强, 郭力, 付志超, 吕计男. 基于功能原理的颤振模态参与度分析方法[J]. 航空学报, 2022, 43(1): 224920-224920. |
[12] | 沈恩楠, 郭同庆, 吴江鹏, 胡家亮, 张桂江. 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021, 42(8): 525773-525773. |
[13] | 陈志强, 刘战合, 苗楠, 冯伟. 基于增量学习的非定常气动力参数化降阶模型[J]. 航空学报, 2021, 42(7): 125103-125103. |
[14] | 雷鹏轩, 余立, 陈德华, 吕彬彬. 飞行控制律对体自由度颤振特性影响试验[J]. 航空学报, 2021, 42(6): 124378-124378. |
[15] | 谢丹, 冀春秀, 景兴建. 高超声速典型弹道下的壁板热气动弹性动力学分析[J]. 航空学报, 2021, 42(11): 524843-524843. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学