1 |
黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.
|
|
HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(4): 507-522 (in Chinese).
|
2 |
TAHAN M, TSOUTSANIS E, MUHAMMAD M, et al. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review[J]. Applied Energy, 2017, 198: 122-144.
|
3 |
VOLPONI A. Gas turbine engine health management: Past, present and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2013, 136(5): 051201.
|
4 |
林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.
|
|
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese).
|
5 |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]∥ 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9.
|
6 |
车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14): 304-312.
|
|
CHE C C, WANG H W, NI X M, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312 (in Chinese).
|
7 |
LIN L, LIU J, GUO H, et al. Sample adaptive aero-engine gas-path performance prognostic model modeling method[J]. Knowledge-Based Systems, 2021, 224: 107072.
|
8 |
WANG C S, ZHU Z H, LU N Y, et al. A data-driven degradation prognostic strategy for aero-engine under various operational conditions[J]. Neurocomputing, 2021, 462: 195-207.
|
9 |
URBAN L A. Gas path analysis applied to turbine engine condition monitoring[J].Journal of Aircraft, 1973, 10(7): 400-406.
|
10 |
SAMPATH S, OGAJI S, SINGH R, et al. Engine-fault diagnostics: An optimisation procedure[J]. Applied Energy, 2002, 73(1): 47-70.
|
11 |
LU F, JU H F, HUANG J Q. An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58: 36-47.
|
12 |
PANT M, ZAHEER H, GARCIA-HERNANDEZ L, et al. Differential evolution: A review of more than two decades of research[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103479.
|
13 |
TANABE R, FUKUNAGA A. Success-history based parameter adaptation for differential evolution[C]∥ 2013 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2013.
|
14 |
TANABE R, FUKUNAGA A S. Improving the search performance of SHADE using linear population size reduction[C]∥ 2014 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2014.
|
15 |
朱昱雯, 肖健梅, 王锡淮. 基于改进SHADE算法的船舶电力系统推力分配[J]. 中国舰船研究, 2020, 15(4): 173-182.
|
|
ZHU Y W, XIAO J M, WANG X H. Thrust distribution of marine power system based on improved SHADE algorithm[J]. Chinese Journal of Ship Research, 2020, 15(4): 173-182 (in Chinese).
|
16 |
BISWAS P P, SUGANTHAN P N, AMARATUNGA G A J. Minimizing harmonic distortion in power system with optimal design of hybrid active power filter using differential evolution[J]. Applied Soft Computing, 2017, 61: 486-496.
|
17 |
ZEDDA M, SINGH R. Gas turbine engine and sensor fault diagnosis using optimization techniques[J]. Journal of Propulsion and Power, 2002, 18(5): 1019-1025.
|
18 |
STAMATIS A, MATHIOUDAKIS K, BERIOS G, et al. Jet engine fault detection with discrete operating points gas path analysis[J]. Journal of Propulsion and Power, 1991, 7(6): 1043-1048.
|
19 |
DIAKUNCHAK I S. Performance deterioration in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(2): 161-168.
|
20 |
SALLAM K M, ELSAYED S M, CHAKRABORTTY R K, et al. Improved multi-operator differential evolution algorithm for solving unconstrained problems[C]∥2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2020.
|
21 |
TANOVOV V, AKHMEDOVA S, SEMENKIN E. NL-SHADE-RSP algorithm with adaptive archive and selective pressure for CEC 2021 numerical optimization[C]∥ 2021 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2021.
|
22 |
ZHANG J Q, SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958.
|
23 |
AWAD N H, ALI M Z, SUGANTHAN P N. Ensemble of parameters in a sinusoidal differential evolution with niching-based population reduction[J]. Swarm and Evolutionary Computation, 2018, 39: 141-156.
|
24 |
MOHAMED A W, HADI A A, MOHAMED A K, et al. Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems[C]∥ 2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2020.
|
25 |
BREST J, MAUČEC M S, BOŠKOVIĆ B. Single objective real-parameter optimization: Algorithm jSO[C]∥ 2017 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2017.
|
26 |
SURJANOVIC S, BINGHAM D. Virtual library of simulation experiments: Test functions and datasets[EB/OL]. (2013) [2022-08-16]..
|
27 |
AWAD N H, ALI M Z, SUGANTHAN P N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]∥ 2017 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2017.
|
28 |
MOHAMED A W, HADI A A, FATTOUH A M, et al. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[C]∥ 2017 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2017.
|
29 |
MOLINA D, LATORRE A, HERRERA F. An insight into bio-inspired and evolutionary algorithms for global optimization: Review, analysis, and lessons learnt over a decade of competitions[J].Cognitive Computation, 2018, 10(4): 517-544.
|