航空学报 > 2023, Vol. 44 Issue (14): 227926-227926   doi: 10.7527/S1000-6893.2022.27926

基于改进L-SHADE算法的航空发动机性能退化评估

秦海勤, 赵杰, 任立坤(), 李边疆   

  1. 海军航空大学青岛校区 力学工程系,青岛 266000
  • 收稿日期:2022-08-16 修回日期:2022-09-26 接受日期:2022-11-29 出版日期:2023-07-25 发布日期:2022-12-14
  • 通讯作者: 任立坤 E-mail:renlikun1988@foxmail.com
  • 基金资助:
    山东省自然科学基金(ZR2021QE193)

Aero-engine performance degradation evaluation based on improved L-SHADE algorithm

Haiqin QIN, Jie ZHAO, Likun REN(), Bianjiang LI   

  1. Department of Mechanical Engineering,Qingdao Campus of Naval Aviation University,Qingdao 266000,China
  • Received:2022-08-16 Revised:2022-09-26 Accepted:2022-11-29 Online:2023-07-25 Published:2022-12-14
  • Contact: Likun REN E-mail:renlikun1988@foxmail.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2021QE193)

摘要:

针对航空发动机健康因子求解寻优精度差的问题,提出了一种基于改进L-SHADE算法的航空发动机性能退化评估方法。首先,采用多工作点分析方法拓展发动机健康因子估计的适应度函数,解决气路测量传感器数量不足的问题;其次,通过引入非线性种群缩减策略解决种群快速缩减的问题,同时通过改进的优化加权变异策略,改变不同迭代阶段贪婪算子的权值,增加算法的全局搜索和局部开发能力;最后,在30个经典基准函数上验证了改进算法的收敛精度和鲁棒性。对航空发动机性能退化评估的计算结果表明,改进L-SHADE算法增强了算法迭代前期的种群多样性和算法后期的开发能力,计算精度较标准L-SHADE算法平均提高了65.5%,能够满足工程精度要求,具有较强的工程适应性,能够应用于实际飞参数据,从而为发动机健康管理和性能监测提供理论依据。

关键词: 性能退化, 健康因子, 种群缩减, 加权变异, 性能监测

Abstract:

Aiming at the problem of poor optimization accuracy of the aero-engine health factor, an aero-engine performance degradation evaluation method based on the improved L-SHADE algorithm is proposed. Firstly, the fitness function of engine health factor estimation is expanded by the multi-operating point analysis method to solve the problem of insufficient number of gas path measurement sensors. Secondly, the problem of rapid population reduction is solved by introducing a nonlinear population reduction strategy. Meanwhile, through the improved optimized weighted mutation strategy, the weights of the greedy operators in different iteration stages are changed, which increases the global search and local development capabilities of the algorithm. Finally, the convergence accuracy and robustness of the improved algorithm are verified on 30 classic benchmark functions. The calculation results of the actual aero-engine performance degradation evaluation show that the improved L-SHADE algorithm enhances the population diversity in the early stage of the algorithm iteration and the development ability in the later stage of the algorithm. Compared with that of the standard L-SHADE algorithm, the calculation accuracy of the improved algorithm is improved by 65.5% on average. The calculation results satisfy the requirements of engineering accuracy with strong engineering adaptability. It can be applied to the flight parameter data, providing a theoretical basis for engine health management and performance monitoring.

Key words: performance degradation, health factor, population reduction, weighted mutation, performance monitoring

中图分类号: