1 |
DRIVER D M, SEEGMILLER H L, MARVIN J G. Time-dependent behavior of a reattaching shear layer[J]. AIAA Journal, 1987, 25(7): 914-919.
|
2 |
BUSH R H, CHYCZEWSKI T S, DURAISAMY K, et al. Recommendations for future efforts in RANS modeling and simulation[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0317.
|
3 |
EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5): 1524-1541.
|
4 |
RUMSEY C L. Application of Reynolds stress models to separated aerodynamic flows[M]∥EISFELD B. Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics. Cham: Springer, 2015: 19-37.
|
5 |
RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[J]. Computers & Fluids, 2005, 34(7): 785-816.
|
6 |
WILCOX D C. Turbulence Modeling for CFD[M]. 3rd edition. San Diego: DCW Industries, 2006.
|
7 |
董义道, 王东方, 王光学, 等. 雷诺应力模型的初步应用[J]. 国防科技大学学报, 2016, 38(4): 46-53.
|
|
DONG Y D, WANG D F, WANG G X, et al. Preliminary application of Reynolds stress model[J]. Journal of National University of Defense Technology, 2016, 38(4): 46-53 (in Chinese).
|
8 |
阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857.
|
|
YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese).
|
9 |
SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Hampton: NASA Langley Research Center, 2014.
|
10 |
RUMSEY C, VATSA V. A comparison of the predictive capabilities of several turbulence models using upwind and central-difference computer codes[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 192.
|
11 |
WANG S Y, DONG Y D, DENG X G, et al. High-order simulation of aeronautical separated flows with a reynold stress model[J]. Journal of Aircraft, 2018, 55(3): 1177-1190.
|
12 |
舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 487-502.
|
|
SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 487-502 (in Chinese).
|
13 |
熊莉芳, 林源, 李世武. k⁃ε湍流模型及其在FLUENT软件中的应用[J]. 工业加热, 2007, 36(4): 13-15.
|
|
XIONG L F, LIN Y, LI S W. k⁃ε turbulent model and its application to the FLUENT[J]. Industrial Heating, 2007, 36(4): 13-15 (in Chinese).
|
14 |
MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description[J]. Flow, Turbulence and Combustion, 2010, 85(1): 113-138.
|
15 |
刘宏康, 陈坚强, 向星皓, 等. 改进k⁃ω⁃γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2022, 43(12): 126868.
|
|
LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD at different Reynolds number by improved k⁃ω⁃γ transition model[J]. Acta Aeronautica et Astronautica Sinica,2022,43(12):126868 (in Chinese).
|
16 |
GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 1: baseline and steady suction[J]. AIAA Journal, 2006, 44(12): 2820-2830.
|
17 |
GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 2: Zero mass-flux oscillatory blowing[J]. AIAA Journal, 2006, 44(12): 2831-2845.
|
18 |
BACHALO W D, JOHNSON D A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model[J]. AIAA Journal, 1986, 24(3): 437-443.
|
19 |
Mayeur J, Dumont A, Destarac D, et al. RANS simulations on TMR test cases and M6 wing with the Onera elsA flow solver[J]. AIAA Paper, 2015, 1745: 2015.
|
20 |
DEMUREN A, SARKAR S. Systematic study of Reynolds stress closure models in the computations of plane channel flows[R]. Hampton: Institute for Computer Applications in Science and Engineering, 1992.
|
21 |
PANDA J P, WARRIOR H V, MAITY S, et al. An improved model including length scale anisotropy for the pressure strain correlation of turbulence[J]. Journal of Fluids Engineering, 2017, 139(4): 044503.
|
22 |
LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3): 537-566.
|
23 |
SPEZIALE C G, SARKAR S, GATSKI T B. Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach[J]. Journal of Fluid Mechanics, 1991, 227: 245-272.
|
24 |
CÉCORA R D, RADESPIEL R, EISFELD B, et al. Differential Reynolds-stress modeling for aeronautics[J]. AIAA Journal, 2014, 53(3): 739-755.
|
25 |
王圣业, 符翔, 杨小亮, 等. 高阶矩湍流模型研究进展及挑战[J]. 力学进展, 2021, 51(1): 29-61.
|
|
WANG S Y, FU X, YANG X L, et al. Progresses and challenges of high-order-moment turbulence closure[J]. Advances in Mechanics, 2021, 51(1): 29-61 (in Chinese).
|
26 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
27 |
GALVÁN S, REGGIO M, GUIBAULT F. Assessment study of K-ɛ turbulence models and near-wall modeling for steady state swirling flow analysis in draft tube using fluent[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(4): 459-478.
|
28 |
TOMINAGA Y, STATHOPOULOS T. Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k⁃ɛ models[J]. Atmospheric Environment, 2009, 43(20): 3200-3210.
|
29 |
WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11): 2823-2838.
|
30 |
BRADSHAW P, FERRISS D H, ATWELL N P. Calculation of boundary-layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3): 593.
|
31 |
KAEWBUMRUNG, TANGSOPA, THONGSRI. Investigation of the trailing edge modification effect on compressor blade aerodynamics using SST k⁃ω turbulence model[J]. Aerospace, 2019, 6(4): 48.
|
32 |
ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136: 808-820.
|