[1] [2] [3] LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications, 2020, 37(11): 2423-2431 (in Chinese). 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用, 2020, 37(11): 2423-2431. [4] QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications, 2015, 32(10): 1298-1304 (in Chinese). 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298-1304. [5] ZONG Q, WANG D D, SHAO S K, et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 1-14 (in Chinese). 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3): 1-14. [6] YANG Z C, ZHENG S Q, LIU F, et al. Adaptive output feedback control for fractional-order multi-agent systems[J]. ISA Transactions, 2020, 96: 195-209. [7] [8] [9] LOPEZ-GONZALEZ A, FERREIRA E D, HERNANDEZ-MARTINEZ E G, et al. Multi-robot formation control using distance and orientation[J]. Advanced Robotics, 2016, 30(14): 901-913. [10] LI L Q, WANG Y T. Adaptive formation control of AUVs in the presence of parametric model uncertainty[J]. Ship Electronic Engineering, 2015, 35(1): 154-157 (in Chinese). 李乐强, 王银涛. 模型参数不确定条件下的自主水下航行器(AUV)自适应编队控制研究[J]. 舰船电子工程, 2015, 35(1): 154-157. [11] [12] ZHOU J K, HU Q L, MA G F, et al. Cooperative attitude and translation control of satellite formation flying using consensus algorithm[J]. Systems Engineering and Electronics, 2011, 33(4): 825-832 (in Chinese). 周稼康, 胡庆雷, 马广富, 等. 基于一致性算法的卫星编队姿轨耦合的协同控制[J]. 系统工程与电子技术, 2011, 33(4): 825-832. [13] [14] [15] ZHANG X L, YANG Y X, XIE Y C. Application of improved ant colony algorithm in robot path planning[J]. Computer Engineering and Applications, 2020, 56(2): 29-34 (in Chinese). 张晓莉, 杨亚新, 谢永成. 改进的蚁群算法在机器人路径规划上的应用[J]. 计算机工程与应用, 2020, 56(2): 29-34. [16] SANG H Q, YOU Y S, SUN X J, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709. [17] WANG N, XU H W, LI C Z, et al. Hierarchical path planning of unmanned surface vehicles: a fuzzy artificial potential field approach[J]. International Journal of Fuzzy Systems, 2021, 23(6): 1797-1808. [18] YANG W L, WU P, ZHOU X Q, et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning[J]. Applied Sciences, 2021, 11(5): 2114. [19] FAN Q H, HU S Q. Design of loop coupling synchronous controller for quadrotor transport formation[J]. Electronics Optics & Control, 2021, 28(6): 57-63 (in Chinese). 范琦涵, 胡士强. 四旋翼运输编队的环形耦合同步控制器设计[J]. 电光与控制, 2021, 28(6): 57-63. [20] GUO Y, WANG D W, DENG Y. Modeling and flight control of quadrotor[J]. Transducer and Microsystem Technologies, 2017, 36(11): 38-41 (in Chinese). 郭勇, 汪大伟, 邓宇. 四旋翼飞行器建模及其运动控制[J]. 传感器与微系统, 2017, 36(11): 38-41. |