[1] 孙侠生, 段世慧, 陈焕星. 坚持自主创新实现航空CAE软件的产业化发展[J]. 计算机辅助工程, 2010, 19(1):1-6. SUN X S, DUAN S H, CHEN H X. Keeping independent innovation, implementing industrialization development of aviation CAE software[J]. Computer Aided Engineering, 2010, 19(1):1-6(in Chinese). [2] 周晔欣, 戴如玥, 黄争鸣. 复合材料结构力学分析CAE软件现状[J]. 应用力学学报, 2020, 37(1):114-122, 475. ZHOU Y X, DAI R Y, HUANG Z M. Current status of CAE software for composite structural analysis[J]. Chinese Journal of Applied Mechanics, 2020, 37(1):114-122, 475(in Chinese). [3] 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5):524651. WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524651(in Chinese). [4] 李卫平, 谭伟, 薛彩军, 等. 民用飞机发动机吊挂部段静力试验与静强度分析[J]. 南京航空航天大学学报, 2011, 43(6):732-737. LI W P, TAN W, XUE C J, et al. Static test and computational analysis for pylon of airliner engine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(6):732-737(in Chinese). [5] 张国凡, 孙侠生, 吴存利, 等. 复合材料整体化多墙盒段渐进式失效分析和试验验证[J]. 复合材料学报, 2016, 33(10):2344-2354. ZHANG G F, SUN X S, WU C L, et al. Progressive failure analysis and test validation of integral multi-spar composite box[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2344-2354(in Chinese). [6] 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望[J]. 航空科学技术, 2020, 31(3):1-14. LIU X C, WANG B W, BAI C Y, et al. Progress and prospect of aviation structure impact dynamics[J]. Aeronautical Science & Technology, 2020, 31(3):1-14(in Chinese). [7] 王彬文, 许光启. 全机非对称外挂状态颤振分析[J]. 应用力学学报, 2001, 18(S1):193-197. WANG B W, XU G Q. Flutter analysis on aircraft for the condition of unsymmetrical stores[J]. Chinese Journal of Applied Mechanics, 2001, 18(Sup 1):193-197(in Chinese). [8] 赵永辉, 胡海岩. 具有操纵面间隙非线性二维翼段的气动弹性分析[J]. 航空学报, 2003, 24(6):521-525. ZHAO Y H, HU H Y. Aeroelastic analysis of a two-dimensional airfoil with control surface freeplay nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6):521-525(in Chinese). [9] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1090. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1090(in Chinese). [10] 沈恩楠, 郭同庆, 吴江鹏, 等. 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021, 42(8):525773. SHEN E N, GUO T Q, WU J P, et al. Full-time coupling method and application of a hypersonic all-movable wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8):525773(in Chinese). [11] 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5):524791. SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524791(in Chinese). [12] 王彬文, 张长兴, 郭文杰, 等. 考虑屈曲的复合材料加筋壁板铺层顺序优化[J]. 复合材料学报, 2021, 38(12):4123-4137. WANG B W, ZHANG C X, GUO W J, et al. Stacking sequence optimization of composite stiffened panel considering buckling[J]. Acta Materiae Compositae Sinica, 2021, 38(12):4123-4137(in Chinese). [13] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8):223987. WANG B W, AI S, ZHANG G F, et al. Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223987(in Chinese). [14] 常楠, 徐荣欣, 陈先民, 等. 静强度/耐久性初步结构优化设计方法[J]. 航空学报, 2021, 42(5):524389. CHANG N, XU R X, CHEN X M, et al. Design method for strength/durability preliminary structure optimization[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524389(in Chinese). [15] 中国工业技术软件化产业联盟, 中国工业软件产业白皮书(2020)[EB/OL].(2021-06-09)[2022-05-17]. http://www.caitis.cn/newsinfo/1573724.html?templateId=100829. China Industrial Technology Software Industry Alliance. White paper on China's industrial software industry(2020)[EB/OL].(2021-06-09)[2022-05-17]. http://www.caitis.cn/newsinfo/1573724.html?templateId=100829(in Chinese). [16] 国家自然科学基金委员会, 中国科学院. 未来10年中国学科发展战略·力学[M]. 北京:科学出版社, 2012:40-120. National Natural Science Foundation of China, Chinese Academy of Sciences. China's discipline development strategy in the next 10 years·Mechanics[M]. Beijing:Science Press, 2012:40-120(in Chinese). [17] 张东凯. 碳纳米管复合材料力学性能的多尺度仿真分析[D]. 大连:大连理工大学, 2016:10-15. ZHANG D K. Multiscale modeling of the mechanical properties of the carbon nanotube-reinforced composites[D]. Dalian:Dalian University of Technology, 2016:10-15(in Chinese). [18] 孙旋, 童明波, 陈智, 等. 碳纤维复合材料接头力学性能试验与仿真分析[J]. 复合材料学报, 2016, 33(11):2517-2527. SUN X, TONG M B, CHEN Z, et al. Test and simulation analysis of mechanical properties for joint of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2517-2527(in Chinese). [19] 王超, 屈方杰, 黄恒敬, 等. 多自由度仿生扑翼飞行机器人结构设计与分析[J]. 宇航总体技术, 2020, 4(1):39-46, 62. WANG C, QU F J, HUANG H J, et al. Design and analysis of multi-degree of freedom bionic flapping wing flight robot structure[J]. Astronautical Systems Engineering Technology, 2020, 4(1):39-46, 62(in Chinese). [20] 孙茂, 吴江浩. 微型飞行器的仿生流体力学:昆虫前飞时的气动力和能耗[J]. 航空学报, 2002, 23(5):385-393. SUN M, WU J H. Biomimetic aerodynamics of micro-air vehicles:Aerodynamic force and power requirements in forward flight of insect[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):385-393(in Chinese). [21] 丁友, 周洲, 祝小平. 基于图形法的仿生拓扑优化方法[J]. 航空动力学报, 2021, 36(11):2389-2399. DING Y, ZHOU Z, ZHU X P. Bionic topology optimization method based on graph method[J]. Journal of Aerospace Power, 2021, 36(11):2389-2399(in Chinese). [22] 艾森, 郭瑜超, 聂小华, 等. 零泊松比蜂窝结构一维变形行为[J]. 南京航空航天大学学报, 2021, 53(4):629-636. AI S, GUO Y C, NIE X H, et al. One-dimensional deformation behavior of a honeycomb structure with zero poisson's ratio[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4):629-636(in Chinese). [23] 李博. 民机加筋壁板仿真模型验证与确认研究[C]//第十三届中国CAE工程分析技术年会,2017. LI B. Verification and validation on simulation models of stiffened panels in commercial aircraft structures[C]//The 13th China CAE Annual Conference, 2017(in Chinese). [24] 许成伟, 张小雯. 仿真流程和数据管理方法研究与应用[J]. 智能制造, 2020(4):39-43. XU C W, ZHANG X W. Research and application of simulation process and data management method[J]. Intelligent Manufacturing, 2020(4):39-43(in Chinese). [25] 张峰. 工业软件-推进智能制造的原动力[J]. 工程技术(文摘版)·建筑, 2016(12):36-37. ZHANG F. Industrial software-The driving force for promoting intelligent manufacturing[J]. Engineering Technology (Abstract Edition)·Architecture, 2016(12):36-37(in Chinese). [26] 钟万勰, 陆仲绩. 事关国家竞争力和国家安全的战略技术[J]. 战略与决策研究, 2007(2):115-119. ZHONG W X, LU Z J. Technology for national competitive power and national security[J]. Strategy & Policy Dicision Research, 2007(2):115-119(in Chinese). [27] 贺贤土, 赵世荣. 加速发展我国高性能计算的建议[J]. 科研信息化技术与应用, 2008, 3:1-7. HE X T, ZHAO S R. Suggestions for accelerating the development of high-performance computing in my country[J]. Scientific Research Information Technology and Application, 2008, 3:1-7(in Chinese). [28] TURNER M J, CLOUGH R W, MARTIN H C, et al. Stiffness and deflection analysis of complex structures[J]. Journal of the Aeronautical Sciences, 1956, 23(9):805-823. [29] NASA. NASTRAN.[EB/OL]. (2017-08-07)[2022-05-17]. https://www.nasa.gov/offices/oct/40-years-of-nasa-spinoff/nastran. [30] BIKER M, SIMON R. Nastran[EB/OL]. (2019-11-13)[2022-05-17]. https://de.zxc.wiki/wiki/NASTRAN#Historie. [31] ZIPPIA, Inc. ANSYS History[EB/OL]. (2021-12-14)[2022-05-17].https://www.zippia.com/ansys-careers-792/history/. [32] LYNN M. Analysis origins-ABAQUS[EB/OL]. (2021-10-14)[2022-05-17]. https://www.nafems.org/blog/posts/analysis-origins-abaqus/. [33] 杜凯. 有限元分析50年发展之路[EB/OL].(2010-05-09)[2022-05-17]. https://articles.e-works.net.cn/cae/article77369.html. DU K. 50 years of development of finite element analysis[EB/OL].(2010-05-09)[2022-05-17].https://articles.e-works.net.cn/cae/article77369.html. [34] NABERHAUS J D,WADDOUPS M E. Dynamic characteristics of advanced filamentary composite structures:AFFDL-TR-73-lll[R]. Air Force Flight Dynamics Laboratory, 1974. [35] ZONA technology. ASTROS-A next generation aircraft design system[EB/OL]. (2017-05-09)[2022-05-17]. https://www.zonatech.com/astros.html. [36] HEXAGON. MSC software[EB/OL].(2022-03-30)[2022-05-17]. https://www.mscsoftware.com/msc-software. [37] 高峰. 由发展时间轴看中国CAE软件短板[J]. 中国工业和信息化, 2020(3):36-43. GAO F. Looking at the shortcomings of China's CAE software from the development timeline[J]. China Industry and Information Technology, 2020(3):36-43(in Chinese). [38] SIEMENS. 西门子LMS软件成功应用于空中客车A350 XWB机型的结构分析[EB/OL].(2014-02-11)[2022-05-17]. https://www.plm.automation.siemens.com/global/zh/our-story/newsroom/siemens-press-release/43713. SIEMENS. Siemens LMS software has been successfully applied to the structural analysis of Airbus A350 XWB[EB/OL].(2014-02-11)[2022-05-17]. https://www.plm.automation.siemens.com/global/zh/our-story/newsroom/siemens-press-release/43713(in Chinese). [39] 林雪萍. 工业软件简史[M]. 上海:上海社会科学院出版社, 2021:180-200. LIN X P. A brief history of industrial software[M]. Shanghai:Shanghai Academy of Social Sciences Press, 2021:180-200(in Chinese). [40] SHAFTO M, CONROY M, DOYLE R, et al. Modeling, simulation, information technology and processing roadmap:NASA-2012-Technology area 11[R]. Washington,D.C.:NASA, 2012. [41] 赵玲. 美国国家科学基金委员会(NSF)资助的计算机科学基础研究[J]. 机器人, 1980, 2(6):79. ZHAO L. Fundamental research in computer science funded by the US National Science Foundation (NSF)[J]. Robotics, 1980, 2(6):79(in Chinese). [42] 知识自动化. 美国仿真软件的国家意志[EB/OL]. (2018-06-13)[2022-05-17]. http://article.cechina.cn/18/0613/02/20180613025251.htm. Knowledge automation. The national will of American simulation software[EB/OL]. (2018-06-13)[2022-05-17]. http://article.cechina.cn/18/0613/02/20180613025251.htm (in Chinese). [43] NSF. NSF history wall.[EB/OL] (2018-05-12)[2022-05-17].https://www.nsf.gov/about/history/history-wall.jsp. [44] 历军. 我国高性能计算科技政策分析——与美国NSCI计划对比[EB/OL]. (2019-03-20)[2022-05-17]. http://cn.chinagate.cn/news/2019-03/20/content_74515235.htm LI J. Analysis of high performance computing technology policy in China-comparison with NSCI program in the United States[EB/OL]. (2019-03-20)[2022-05-17]. http://cn.chinagate.cn/news/2019-03/20/content_74515235.htm (in Chinese). [45] 高梓萍, 樊秋良, 袁国兴. 美国总统信息技术咨询委员会《计算科学:确保美国竞争力》报告概要[J]. 高性能计算发展与应用, 2006(3):12-20. GAO Z P, FAN Q L, YUAN G X. Summary of the report of the presidential Advisory Committee on information technology, "Computing science:Ensuring American competitiveness"[J]. Development and Application of High Performance Computing, 2006(3):12-20(in Chinese). [46] 张洪武, 顾元宪, 关振群, 等. 用于有限元分析与优化设计的JIFEX软件[J]. 计算机集成制造系统-CIMS, 2003, 9(S1):160-166. ZHANG H W, GU Y X, GUAN Z Q, et al. JIFEX software for finite element analysis and optimization design[J]. Computer Integrated Manufacturing Systems, 2003, 9(Sup 1):160-166(in Chinese). [47] 袁明武, 陈璞, 郑东, 等. 微机结构分析通用程序SAP84(版本4.0)[J]. 计算结构力学及其应用, 1995, 12(3):298-300. YUAN M W, CHEN P, ZHENG D, et al. SAP84——A general purpose structural analysis program on microcomputer(Version 4.0)[J]. Computational Structural Mechanics and Its Applications, 1995, 12(3):298-300(in Chinese). [48] 王锡山. 紫瑞CAE"傻瓜"版软件介绍[J]. 航空工程与维修, 2000(2):49-50. WANG X S. Introduction to Zirui CAE "For Dummies" software[J]. Aviation Engineerging & Mainienance, 2000(2):49-50(in Chinese). [49] 王绍华. 《建筑工程设计软件包》(BDP)综合研制报告[C]//第三届全国建工系统计算机应用学术交流会, 1986. WANG S H. "Building Engineering Design Software Package" (BDP) comprehensive development report[C]//The Third National Conference on Computer Application in Construction Engineering, 1986(in Chinese). [50] 梁国平, 唐菊珍. 有限元分析软件平台FEPG[J]. 计算机辅助工程, 2011, 20(3):92-96. LIANG G P, TANG J Z. Finite element analysis software platform FEPG[J]. Computer Aided Engineering, 2011, 20(3):92-96(in Chinese). [51] 吴存利, 张倩, 段世慧. 加筋板结构强度分析软件STRANAS设计和应用[J]. 强度与环境, 2011, 38(3):36-44. WU C L, ZHANG Q, DUAN S H. Design and application of strength software STRANAS for stiffened panels[J]. Structure & Environment Engineering, 2011, 38(3):36-44(in Chinese). [52] 薛景川, 焦坤芳. 飞机结构耐久性/损伤容限设计的工程控制[C]//第十二届全国结构工程学术会议, 2003. XUE J C, JIAO K F. Engineering control of aircraft structural durability/damage tolerance design[C]//The 12th National Conference on Structural Engineering, 2003(in Chinese). [53] 任青梅, 杨志斌, 成竹, 等. 气动加热与结构温度场耦合分析平台研发技术[J]. 强度与环境, 2009, 36(5):33-38. REN Q M, YANG Z B, CHENG Z, et al. Development of the platform for analysis coupling aeroheating and structural temperature field[J]. Structure & Environment Engineering, 2009, 36(5):33-38(in Chinese). [54] 肖世富,范宣华,牛红攀, 等. 重大装备工程力学并行分析软件平台PANDA研发进展[C].//第十六届全国模态分析与试验学术会议, 2016. XIAO S F, FAN X H, NIU H P, et al. Developing progress of PANDA:A parallel analysis software platform for engineering mechanics of large equipments[C]//The 16th National Conference on Modal Analysis and Testing, 2016(in Chinese). [55] 史光梅, 何颖波, 吴瑞安, 等. 面向对象有限元并行计算框架PANDA[J]. 计算机辅助工程, 2010, 19(4):8-14. SHI G M, HE Y B, WU R A, et al. Object-oriented finite element parallel computation framework PANDA[J]. Computer Aided Engineering, 2010, 19(4):8-14(in Chinese). [56] 徐建国, 石正军, 郝志明, 等. 基于PANDA框架的非线性静力学有限元并行计算程序设计和初步验证[J]. 固体力学学报, 2010, 31(S1):294-298. XU J G, SHI Z J, HAO Z M, et al. Design and verification of a nonlinear statics fem parallel computing code based on PANDA framwork[J]. Chinese Journal of Solid Mechanics, 2010, 31(Sup 1):294-298(in Chinese). [57] 李健, 郝志明, 宁佐贵. 基于PANDA框架的并行有限元模态分析程序开发和应用[J]. 计算机辅助工程, 2011, 20(1):29-32. LI J, HAO Z M, NING Z G. Development and application of parallel program for finite element modal analysis based on PANDA[J]. Computer Aided Engineering, 2011, 20(1):29-32(in Chinese). [58] 陈成军, 柳阳, 张元章, 等. 基于PANDA的并行显式有限元程序开发[J]. 计算力学学报, 2011, 28(S1):204-207, 214. CHEN C J, LIU Y, ZHANG Y Z, et al. Programming of parallel explicit finite element based on PANDA[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1):204-207, 214(in Chinese). [59] 张洪武, 陈飙松, 李云鹏, 等. 面向集成化CAE软件开发的SiPESC研发工作进展[J]. 计算机辅助工程, 2011, 20(2):39-49. ZHANG H W, CHEN B S, LI Y P, et al. Advancement of design and implementation of SiPESC for development of integrated CAE software systems[J]. Computer Aided Engineering, 2011, 20(2):39-49(in Chinese). [60] 曲越, 秦晓钰, 黄海刚, 等. 中美贸易摩擦对中国产业与经济的影响:以2018年美国对华301调查报告为例[J]. 中国科技论坛, 2018(5):128-135. QU Y, QIN X Y, HUANG H G, et al. The impact of China-US trade friction on China's industry and economy based on section 301 investigation report on China in 2018[J]. Forum on Science and Technology in China, 2018(5):128-135(in Chinese). [61] 中华人民共和国国务院. 新时期促进集成电路产业和软件产业高质量发展的若干策[R/OL].(2020-08-04)[2022-05-17]. http://www.gov.cn/zhengce/content/2020-08/04/content_5532370.html. The State Council of the People's Republic of China. Notice of the state council on printing and distributing several policies for promoting the high-quality development of the integrated circuit industry and software industry in the New Era"[R/OL]. (2020-08-04)[2022-05-17]. http://www.gov.cn/zhengce/content/2020-08/04/content_5532370.html (in Chinese). [62] 陈璞, 傅向荣, 张群,等. 计算力学科研、教学与CAE软件开发[C]//北京力学会学术年会暨北京振动工程学会学术年会, 2015. CHEN P, FU X R, ZHANG Q, et al. Computational mechanics research, teaching and CAE software development[C]//Academic Annual Meeting of Beijing Mechanics Society and Beijing Vibration Engineering Society, 2015(in Chinese). [63] GUSTAVSON F G. Two fast algorithms for sparse matrices:Multiplication and permuted transposition[J]. ACM Transactions on Mathematical Software, 1978, 4(3):250-269. [64] PISSANETSKY S. Spare matrix technology[M]. New York:Academic Press, 1984:23-35. [65] LAWSON C L, HANSON R J, KINCAID D R, et al. Basic linear algebra subprograms for fortran usage[J]. ACM Transactions on Mathematical Software, 1979, 5(3):308-323. [66] SLEIJPEN G L G, VAN DER VORST H A. A jacobi-Davidson iteration method for linear eigenvalue problems[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(2):401-425. [67] STEWART G W. A Krylov:Schur algorithm for large eigenproblems[J]. SIAM Journal on Matrix Analysis and Applications, 2002, 23(3):601-614. [68] DAVIDSON E R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices[J]. Journal of Computational Physics, 1975, 17(1):87-94. [69] 杨智春, 田玮, 谷迎松, 等. 带集中非线性的机翼气动弹性问题研究进展[J]. 航空学报, 2016, 37(7):2013-2044. YANG Z C, TIAN W, GU Y S, et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2013-2044(in Chinese). [70] 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3):428-466. HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3):428-466(in Chinese). [71] 杨佑绪, 吴志刚, 杨超. 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013, 34(12):2748-2756. YANG Y X, WU Z G, YANG C. An aeroelastic optimization design approach for structural configuration of flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2748-2756(in Chinese). [72] 杨智春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 37(12):3578-3587. YANG Z C, LIU L Y, WANG X C. Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3578-3587(in Chinese). [73] 王彬文. 民用飞机典型结构静强度分析手册[M]. 西安:西北工业大学出版社, 2021:60-80. WANG B W. Handbook for static strength analysis of typical structures of civil aircraft[M]. Xi'an:Northwestern Polytechnical University Press, 2021:60-80(in Chinese). [74] 赵峻峰, 邹新煌, 武建国. 基于网络数据库和CAESAM框架的飞机结构强度校核平台[C]//第九届中国CAE工程分析技术年会, 2013. ZHAO J F, ZOU X H, WU J G. Integrated strength analysis platform for aircraft based on web database and CAESAM[C]//The 9th China CAE Engineering Analysis Technology Annual Conference, 2013(in Chinese). [75] 汤超, 乔玉炜. 基于MSC.Patran的飞机壁板结构强度校核系统[J]. 科学技术与工程, 2012, 12(11):2755-2759. TANG C, QIAO Y W. Strength evaluation system for aircraft panel structures based on MSC.Patran[J]. Science Technology and Engineering, 2012, 12(11):2755-2759(in Chinese). [76] 王晓辉, 王立凯, 张生贵. 蜂窝夹层结构强度校核模块的设计与实现[J]. 工程与试验, 2017, 57(4):1-5, 73. WANG X H, WANG L K, ZHANG S G. Design and realization of strength checking module of honeycomb sandwich structure[J]. Engineering & Test, 2017, 57(4):1-5, 73(in Chinese). [77] 艾森, 王晓辉, 许向彦, 等. 飞机金属加筋壁板结构强度校核软件设计与实现[J]. 机械科学与技术, 2022, 41(2):322-328. AI S, WANG X H, XU X Y, et al. Design and implementation of strength check software for aircraft metal stiffened panel[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2):322-328(in Chinese). [78] 艾森, 许向彦, 王立凯. 基于JSON格式的强度校核软件数据交互接口设计[J]. 软件导刊, 2021, 20(10):26-30. AI S, XU X Y, WANG L K. Design of data interaction interface of strength check software based on JSON format[J]. Software Guide, 2021, 20(10):26-30(in Chinese). [79] 费莲, 吴敬凯, 孙明琦, 等. 基于Laminate Tools的机载天线罩力学仿真和优化设计[J]. 电子机械工程, 2014, 30(4):61-64. FEI L, WU J K, SUN M Q, et al. Mechanical simulation and optimization design of airborne antenna radome based on Laminate Tools[J]. Electro-Mechanical Engineering, 2014, 30(4):61-64(in Chinese). [80] 袁国青.复合材料结构CAE教程[M]. 上海:同济大学出版社, 2018:45-60. YUAN G Q. Composite material structure CAE tutorial[M]. Shanghai:Tongji University Press, 2018:45-60(in Chinese). [81] DOGHRI I, ADAM L, BILGER N. Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method[J]. International Journal of Plasticity, 2010, 26(2):219-238. [82] HEY A J G, TANSLEYS, TOLLE K M. The fourth paradigm:Data-intensive scientific discovery[M]. Redmond:Microsoft Research,2009:20-30. [83] 韩贝. SQLite数据库研究与应用[D]. 南京:南京邮电大学, 2019:5-15. HAN B. Research and application of SQLite database[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019:5-15(in Chinese). [84] 岑冬梅, 陈和平, 张剑波. 基于SQLite的二次封装方法在车载导航系统中的应用[J]. 计算机系统应用, 2008, 17(10):24-27. CEN D M, CHEN H P, ZHANG J B. Application of secondary encapsulating methods based on SQLite in the vehicle navigation system[J]. Computer Systems & Applications, 2008, 17(10):24-27(in Chinese). [85] CHRISTODOUBLE J A. Integrated computational materials engineering and materials genome initiative:Accelerating materials innovation[J]. Advanced Materials & Processes, 2013, 171(3):28-31. [86] DE PABLO J J, JONES B, KOVACS C L, et al. The materials genome initiative, the interplay of experiment, theory and computation[J]. Current Opinion in Solid State and Materials Science, 2014, 18(2):99-117. [87] 向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电子科技大学学报, 2016, 45(4):634-649. XIANG Y, YAN Z K, ZHU Y L, et al. Progress on materials genome technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):634-649(in Chinese). [88] 王卓, 杨小渝, 郑宇飞, 等. 材料基因组框架下的材料集成设计及信息平台初探[J]. 科学通报, 2013, 58(35):3733-3744. WANG Z, YANG X Y, ZHENG Y F, et al. Preliminary exploration of material integrated design and information platform under the framework of materials genome[J]. Chinese Science Bulletin, 2013, 58(35):3733-3744(in Chinese). [89] 刘波, 黄晓艳, 查海波. 金属材料常用力学性能的测定[J]. 铸造技术, 2013, 34(3):286-289. LIU B, HUANG X Y, ZHA H B. Determination of common mechanical property of metallic materials[J]. Foundry Technology, 2013, 34(3):286-289(in Chinese). [90] 《飞机设计手册》总编委会. 飞机设计手册第3册:材料[M]. 北京:航空工业出版社,1996:537-573. General Editorial Board of Aircraft Design Manual. Aircraft design manual volume 3:Materials[M]. Beijing:Aviation Industry Press, 1996:537-573(in Chinese). [91] 赵旷怡, 郝晓东, 周石光. 金属材料数据信息系统的支撑技术[J]. 钢铁研究学报, 2012, 24(11):1-5. ZHAO K Y, HAO X D, ZHOU S G. Supporting technology on data information system of materials[J]. Journal of Iron and Steel Research, 2012, 24(11):1-5(in Chinese). [92] GREER R, FERENCZ R. NAFEMS finite element benchmarks for MDG code verification[R]. Oak Ridge:Office of Scientific and Technical Information (OSTI), 2004. [93] BENAOUALI A, KACHEL S. An automated CAD/CAE integration system for the parametric design of aircraft wing structures[J]. Journal of Theoretical and Applied Mechanics, 2017:447. [94] 代光月, 曾磊, 刘深深, 等. 考虑力/热/结构多场耦合效应的飞行弹道预测[J]. 航空学报, 2018, 39(12):122346. DAI G Y, ZENG L, LIU S S, et al. Prediction of flight trajectory considering fluid-thermal-structural coupling effect[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122346(in Chinese). [95] 童自翔, 李明佳, 李冬. 导热-辐射耦合传热的多尺度分析和数值模型[J]. 航空学报, 2021, 42(9):625729. TONG Z X, LI M J, LI D. Multiscale analysis and numerical model for coupled conduction-radiation heat transfer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):625729(in Chinese). [96] NIELSEN E J, DISKIN B. High-performance aerodynamic computations for aerospace applications[J]. Parallel Computing, 2017, 64:20-32. |