[1] 干勇. 中国制造2025三大基础要素:新材料、新型信息技术、技术创新体系[J]. 中国科技产业, 2018(1):50. GAN Y. Three basic elements of made in china 2025:New materials, new information technology, and technology innovation system[J]. Science & Technology Industry of China, 2018(1):50(in Chinese). [2] 赵云峰. 先进高分子材料在航天工业领域的应用[J]. 军民两用技术与产品, 2013(6):8-12, 38. ZHAO Y F. Application of advanced polymer materials in aerospace industry[J]. Dual Use Technologies & Products, 2013(6):8-12, 38(in Chinese). [3] 王正峰, 周艺玮. 航空用先进复合材料的主要种类与制造工艺[J]. 仪表技术, 2018(3):40-43. WANG Z F, ZHOU Y W. The main types of composite materials and advanced manufacturing technology for aviation[J]. Instrumentation Technology, 2018(3):40-43(in Chinese). [4] GRUJICIC M, SELLAPPAN V, OMAR M A, et al. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components[J]. Journal of Materials Processing Technology, 2008, 197(1-3):363-373. [5] AMANCIO-FILHO S T, DOS SANTOS J F. Joining of polymers and polymer-metal hybrid structures:Recent developments and trends[J]. Polymer Engineering & Science, 2009, 49(8):1461-1476. [6] HIRSCH F, MVLLER S, MACHENS M, et al. Simulation of self-piercing rivetting processes in fibre reinforced polymers:Material modelling and parameter identification[J]. Journal of Materials Processing Technology, 2017, 241:164-177. [7] 付文强, 王小兵, 王宝春, 等. 树脂基复合材料与金属材料胶接体系研究进展[J]. 复合材料科学与工程, 2020(6):121-128. FU W Q, WANG X B, WANG B C, et al. Research progress on adhesion system of resin-based composites and metal materials[J]. Composites Science and Engineering, 2020(6):121-128(in Chinese). [8] KAISER I, TAN K T. Damage and strength analysis of Carbon Fiber Reinforced Polymer and Titanium tubular-lap joint using hybrid adhesive design[J]. International Journal of Adhesion and Adhesives, 2020, 103:102710. [9] 李翠翠, 王延召, 王延琴. 我国胶粘剂及胶接技术的应用现状及发展[J]. 工程与试验, 2019, 59(4):111-112. LI C C, WANG Y Z, WANG Y Q. Applicaton and development of adhesives and bonding technology in China[J]. Engineering & Test, 2019, 59(4):111-112(in Chinese). [10] LIU F C, DONG P, LU W, et al. On formation of AlOC bonds at aluminum/polyamide joint interface[J]. Applied Surface Science, 2019, 466:202-209. [11] PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys-A review[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101:1-29. [12] KAPIDŽIĆ Z, ANSELL H, SCHÖN J, et al. Fatigue bearing failure of CFRP composite in bolted joints exposed to biaxial variable amplitude loading at elevated temperature[J]. Composite Structures, 2016, 142:71-77. [13] GALIŃG SKA A, GALIŃG SKI C. Mechanical joining of fibre reinforced polymer composites to metals-A review. part II:Riveting, clinching, non-adhesive form-locked joints, pin and loop joining[J]. Polymers, 2020, 12(8):1681. [14] GRANT L D R, ADAMS R D, DA SILVA L F M. Experimental and numerical analysis of single-lap joints for the automotive industry[J]. International Journal of Adhesion and Adhesives, 2009, 29(4):405-413. [15] 李光耀, 冯雪瑞, 蒋浩, 等. 碳纤维-铝合金电磁铆接与准静态压铆对比[J]. 锻压技术, 2017, 42(4):85-90. LI G Y, FENG X R, JIANG H, et al. Comparison electromagnetic riveting with quasi-static pressure riveting for CFRP-aluminum alloy sheets[J]. Forging & Stamping Technology, 2017, 42(4):85-90(in Chinese). [16] SU J H, TAN C W, WU Z L, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics & Laser Technology, 2020, 124:106006. [17] CHEN Y J, YUE T M, GUO Z N. A new laser joining technology for direct-bonding of metals and plastics[J]. Materials & Design, 2016, 110:775-781. [18] WAHBA M, KAWAHITO Y, KATAYAMA S. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate[J]. Journal of Materials Processing Technology, 2011, 211(6):1166-1174. [19] 赵耀邦, 徐爱杰, 姜勇, 等. 激光焊接技术研究进展及其在航天领域的应用[J]. 航天制造技术, 2013(3):55-58. ZHAO Y B, XU A J, JIANG Y, et al. Technology of laser welding-recent advances of research and application in aerospace[J]. Aerospace Manufacturing Technology, 2013(3):55-58(in Chinese). [20] 檀财旺, 苏健晖, 冯紫微, 等. 金属与塑料激光连接的研究现状与展望[J]. 机械工程学报, 2020, 56(6):85-94. TAN C W, SU J H, FENG Z W, et al. Research status and development on laser joining of metal to plastic[J]. Journal of Mechanical Engineering, 2020, 56(6):85-94(in Chinese). [21] HUANG Y X, MENG X C, WANG Y H, et al. Joining of aluminum alloy and polymer via friction stir lap welding[J]. Journal of Materials Processing Technology, 2018, 257:148-154. [22] DERAZKOLA H A, SIMCHI A. An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly(methyl methacrylate)[J]. Thin-Walled Structures, 2019, 135:376-384. [23] KHODABAKHSHI F, HAGHSHENAS M, SAHRAEINEJAD S, et al. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene[J]. Materials Characterization, 2014, 98:73-82. [24] RHODES C G, MAHONEY M W, BINGEL W H, et al. Effects of friction stir welding on microstructure of 7075 aluminum[J]. Scripta Materialia, 1997, 36(1):69-75. [25] LIU F C, LIAO J, NAKATA K. Joining of metal to plastic using friction lap welding[J]. Materials & Design (1980-2015), 2014, 54:236-244. [26] JI S D, HUANG R F, MENG X C, et al. Enhancing friction stir weldability of 6061-T6 Al and AZ31B Mg alloys assisted by external non-rotational shoulder[J]. Journal of Materials Engineering and Performance, 2017, 26(5):2359-2367. [27] PANNEERSELVAM K, LENIN K. Investigation on effect of tool forces and joint defects during FSW of polypropylene plate[J]. Procedia Engineering, 2012, 38:3927-3940. [28] PAYGANEH G H, ARAB N B M, ASL Y D et al. Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds[J]. International Journal of Physical Sciences, 2011, 6(19):4595-4601 [29] ELANGOVAN K, BALASUBRAMANIAN V. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy[J]. Journal of Materials Processing Technology, 2008, 200(1-3):163-175. [30] HUANG Y X, MENG X C, XIE Y M, et al. Joining of carbon fiber reinforced thermoplastic and metal via friction stir welding with co-controlling shape and performance[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112:328-336. [31] GAO J C, SHEN Y F, LI C. Fabrication of high-density polyethylene/multiwalled carbon nanotube composites via submerged friction stir processing[J]. Journal of Thermoplastic Composite Materials, 2017, 30(2):241-254. [32] HUANG Y X, MENG X C, XIE Y M, et al. Friction stir welding/processing of polymers and polymer matrix composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 105:235-257. [33] NAGATSUKA K, YOSHIDA S, TSUCHIYA A, et al. Direct joining of carbon-fiber-reinforced plastic to an aluminum alloy using friction lap joining[J]. Composites Part B:Engineering, 2015, 73:82-88. [34] RAHMAT S M, HAMDI M, YUSOF F, et al. Preliminary study on the feasibility of friction stir welding in 7075 aluminium alloy and polycarbonate sheet[J]. Materials Research Innovations, 2014, 18(S6):S6-515. [35] MOSHWAN R, RAHMAT S M, YUSOF F, et al. Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy[J]. International Journal of Materials Research, 2015, 106(3):258-266. [36] GOUSHEGIR S M, DOS SANTOS J F, AMANCIO-FILHO S T. Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints:Microstructure and mechanical performance[J]. Materials & Design (1980-2015), 2014, 54:196-206. [37] SAEEDY S, BESHARATI GIVI M K. Investigation of the effects of critical process parameters of friction stir welding of polyethylene[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(8):1305-1310. [38] LAMBIASE F, PAOLETTI A, ILIO A. Effect of tool geometry on mechanical behavior of friction stir spot welds of polycarbonate sheets[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):3005-3016. [39] SADEGHIAN N, BESHARATI GIVI M K. Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets[J]. Materials & Design, 2015, 67:145-153. [40] KISS Z, CZIGÁNY T. Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly(ethylene-terephthalate-glycol)[J]. Journal of Applied Polymer Science, 2012, 125(3):2231-2238. [41] AHMADI H, MOSTAFA ARAB N B, GHASEMI F A. Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method[J]. Journal of Mechanical Science and Technology, 2014, 28(1):279-284. [42] 李琳. 激光焊在航空制造领域的应用现状研究[J]. 焊接技术, 2020, 49(3):1-4. LI L. Research on application status of laser welding in aviation manufacturing[J]. Welding Technology, 2020, 49(3):1-4(in Chinese). [43] DE TRAGLIA AMANCIO FILHO S, BEYER M, DOS SANTOS J F. Method of connecting a metallic bolt to a plastic workpiece:US7575149[P]. 2009-08-18. [44] ABIBE A B, SÔNEGO M, DOS SANTOS J F, et al. On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures[J]. Materials & Design, 2016, 92:632-642. [45] ROTHEISER J. Joining of plastics:Handbook for designers and engineers[M]. 2rd ed. Liberty Twp:Hanser Publication, 2009:195-197 [46] BUFFA G, BAFFARI D, CAMPANELLA D, et al. An innovative friction stir welding based technique to produce dissimilar light alloys to thermoplastic matrix composite joints[J]. Procedia Manufacturing, 2016, 5:319-331. [47] MENG X C, HUANG Y X, XIE Y M, et al. Friction self-riveting welding between polymer matrix composites and metals[J]. Composites Part A:Applied Science and Manufacturing, 2019, 127:105624. [48] PAIDAR M, OJO O O, MOGHANIAN A, et al. Pre-threaded hole friction stir spot welding of AA2219/PP-C30S sheets[J]. Journal of Materials Processing Technology, 2019, 273:116272. [49] 孙靖先, 葛美周, 赵香国, 等. 粘接在轨道交通车辆上的应用进展[J]. 机车车辆工艺, 2020(2):15-16, 23. SUN J X, GE M Z, ZHAO X G, et al. Application progress of adhesive bonding in rail transit vehicles[J]. Locomotive & Rolling Stock Technology, 2020(2):15-16, 23(in Chinese). [50] HEIDE-JØRGENSEN S, MØLLER R K, BUHL K B, et al. Efficient bonding of ethylene-propylene-diene M-class rubber to stainless steel using polymer brushes as a nanoscale adhesive[J]. International Journal of Adhesion and Adhesives, 2018, 87:31-41. [51] ALIAKBARI M, JAZANI O M, SOHRABIAN M. Epoxy adhesives toughened with waste tire powder, nanoclay, and phenolic resin for metal-polymer lap-joint applications[J]. Progress in Organic Coatings, 2019, 136:105291. [52] 李健, 钟震, 任天斌. 环境友好型橡胶-金属胶粘剂的研究进展[J]. 中国胶粘剂, 2013, 22(6):38-41. LI J, ZHONG Z, REN T B. Research progress of environment-friendly rubber-metal adhesive[J]. China Adhesives, 2013, 22(6):38-41(in Chinese). [53] SUNDRIYAL P, PANDEY M, BHATTACHARYA S. Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2020, 101:102626. [54] HE M Y, EVANS A G, HUTCHINSON J W. Crack deflection at an interface between dissimilar elastic materials:Role of residual stresses[J]. International Journal of Solids and Structures, 1994, 31(24):3443-3455. [55] PIVETEAU L D, GASSER B, SCHLAPBACH L. Evaluating mechanical adhesion of Sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application[J]. Biomaterials, 2000, 21(21):2193-2201. [56] LANE M W, LINIGER E G, LLOYD J R. Relationship between interfacial adhesion and electromigration in Cu metallization[J]. Journal of Applied Physics, 2003, 93(3):1417-1421. [57] SHAN M J, ZHAO L B, HONG H M, et al. A progressive fatigue damage model for composite structures in hygrothermal environments[J]. International Journal of Fatigue, 2018, 111:299-307. [58] SHAN M J, ZHAO L B, LIU F R, et al. Revealing the competitive fatigue failure behaviour of CFRP-aluminum two-bolt, double-lap joints[J]. Composite Structures, 2020, 244:112166. [59] 张胜玉. 塑料激光焊接技术[J]. 包装与食品机械, 2007, 25(1):32-38, 46. ZHANG S Y. Laser welding technology of plastics[J]. Packaging and Food Machinery, 2007, 25(1):32-38, 46(in Chinese). [60] LAMBIASE F, GENNA S. Homogenization of temperature distribution at metal-polymer interface during Laser Direct Joining[J]. Optics & Laser Technology, 2020, 128:106226. [61] HUSSEIN F I, SALLOOMI K N, AKMAN E, et al. Finite element thermal analysis for PMMA/st.st.304 laser direct joining[J]. Optics & Laser Technology, 2017, 87:64-71. [62] TAO W, SU X, CHEN Y B, et al. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints[J]. Journal of Manufacturing Processes, 2019, 45:1-8. [63] MIYASHITA Y, TAKAHASHI M, TAKEMI M, et al. Dissimilar materials micro welding between stainless steel and plastics by using pulse YAG laser[J]. Journal of Solid Mechanics and Materials Engineering, 2009, 3(2):409-415. [64] SAKANO R, MURAKAMI K, YAMASHITA K, et al. Development of spot FSW robot system for automobile body members[C]//Proceedings of the 3rd International Symposium on Friction Stir Welding, 2001:645-650. [65] SCHILING C, DOS SANTOS JF. Method and device for linking at least two adjoining work pieces by friction welding:WO 2001/036144[P]. 2006-05-17 [66] GOUSHEGIR S M. Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures[J]. Welding in the World, 2016, 60(6):1073-1093. [67] KARAMI PABANDI H, MOVAHEDI M, KOKABI A H. A new refill friction spot welding process for aluminum/polymer composite hybrid structures[J]. Composite Structures, 2017, 174:59-69. [68] GOUSHEGIR S M, DOS SANTOS J F, AMANCIO-FILHO S T. Influence of process parameters on mechanical performance and bonding area of AA2024/carbon-fiber-reinforced poly(phenylene sulfide) friction spot single lap joints[J]. Materials & Design, 2015, 83:431-442. [69] GOUSHEGIR S M, DOS SANTOS J F, AMANCIO-FILHO S T. Failure and fracture micro-mechanisms in metal-composite single lap joints produced by welding-based joining techniques[J]. Composites Part A:Applied Science and Manufacturing, 2016, 81:121-128. [70] SUHUDDIN U, CAMPANELLI L, BISSOLATTI M, et al. A review on microstructural and mechanical properties of friction spot welds in Al-based similar and dissimilar joints[M]//Proceedings of the 1st International Joint Symposium on Joining and Welding. Amsterdam:Elsevier, 2013:15-21. [71] FILHO S T A. FRICTION RIVETING:Development and analysis of a new joining technique for polymer-metal multi-material structures[J]. Welding in the World, 2011, 55(1):13-24. [72] BLAGA L, DOS SANTOS J F, BANCILA R, et al. Friction Riveting (FricRiveting) as a new joining technique in GFRP lightweight bridge construction[J]. Construction and Building Materials, 2015, 80:167-179. [73] BORBA N Z, BLAGA L, DOS SANTOS J F, et al. Direct-Friction Riveting of polymer composite laminates for aircraft applications[J]. Materials Letters, 2018, 215:31-34. [74] RODRIGUES C F, BLAGA L A, DOS SANTOS J F, et al. FricRiveting of aluminum 2024-T351 and polycarbonate:Temperature evolution, microstructure and mechanical performance[J]. Journal of Materials Processing Technology, 2014, 214(10):2029-2039. [75] BRUNO C, LUCIAN B, JORGE F, et al. Friction riveting ('FricRiveting') of 6056 T6 aluminium alloy and polyamide 6:Influence of rotational speed on the formation of the anchoring zone and on mechanical performance[J]. Welding International, 2017, 31(7):509-518. [76] ABIBE A B, AMANCIO-FILHO S T, DOS SANTOS J F, et al. Mechanical and failure behaviour of hybrid polymer-metal Staked joints[J]. Materials & Design, 2013, 46:338-347. [77] LEE C J, KIM B M, KANG B S, et al. Improvement of joinability in a hole clinching process with aluminum alloy and carbon fiber reinforced plastic using a spring Die[J]. Composite Structures, 2017, 173:58-69. [78] LAMBIASE F, DURANTE M, ILIO A D. Fast joining of aluminum sheets with Glass Fiber Reinforced Polymer (GFRP) by mechanical clinching[J]. Journal of Materials Processing Technology, 2016, 236:241-251. [79] LAMBIASE F, KO D C. Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets[J]. Composite Structures, 2017, 164:180-188. [80] KELLY G, HALLSTRÖM S. Bearing strength of carbon fibre/epoxy laminates:Effects of bolt-hole clearance[J]. Composites Part B:Engineering, 2004, 35(4):331-343. [81] GRAHAM D P, REZAI A, BAKER D, et al. The development and scalability of a high strength, damage tolerant, hybrid joining scheme for composite-metal structures[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64:11-24. [82] GRAHAM D P, REZAI A, BAKER D, et al A hybrid joining scheme for high strength multi-material joints[C]//In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, South Korea, 2011:21-26. [83] SCHIMANSKI K, VON HEHL A, ZOCH H W. Failure behavior of diffusion bonded transition structures for integral FRP-aluminum compounds[J]. Procedia Materials Science, 2013, 2:189-196. [84] XIONG W, BLACKMAN B, DEAR J P, et al. The effect of composite orientation on the mechanical properties of hybrid joints strengthened by surfi-sculpt[J]. Composite Structures, 2015, 134:587-592. [85] 张焱琴, 杨丽霞, 谢鹏波. 硅烷偶联剂在金属表面预处理中的应用研究进展[J]. 材料保护, 2017, 50(12):67-73. ZHANG Y Q, YANG L X, XIE P B. Research progress of application of silane coupling agents in pretreatment of metal surface[J]. Materials Protection, 2017, 50(12):67-73(in Chinese). |