[1] PEERY K, IMLAY S. Blunt-body flow simulations[C]//24th Joint Propulsion Conference. Reston: AIAA, 1988. [2] QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids, 1994, 18(6): 555-574. [3] BARTH T J. Some notes on shock resolving flux functions. Part 1: Stationary characteristics: NASA-TM-101087[R].Washington, D.C.: NASA, 1989. [4] PANDOLFI M, D’AMBROSIO D. Numerical instabilities in upwind methods: Analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2): 271-301. [5] CHEN Z Q, HUANG X D, REN Y X, et al. Mechanism study of shock instability in Riemann-solver-based shock-capturing scheme[J]. AIAA Journal, 2018, 56(9): 3636-3651. [6] CHEN Z Q, HUANG X D, REN Y X, et al. Mechanism-derived shock instability elimination for Riemann-solver-based shock-capturing scheme[J]. AIAA Journal, 2018, 56(9): 3652-3666. [7] XIE W J, LI W, LI H, et al. On numerical instabilities of Godunov-type schemes for strong shocks[J]. Journal of Computational Physics, 2017, 350: 607-637. [8] XIE W J. Towards an accurate and robust Roe-Type scheme for all Mach number flows[J]. Advances in Applied Mathematics and Mechanics, 2019, 11(1): 132-167. [9] XIE W J, ZHANG R, LAI J Q, et al. An accurate and robust HLLC-type Riemann solver for the compressible Euler system at various Mach numbers[J]. International Journal for Numerical Methods in Fluids, 2019, 89(10): 430-463. [10] FLEISCHMANN N, ADAMI S, HU X Y, et al. A low dissipation method to cure the grid-aligned shock instability[J]. Journal of Computational Physics, 2020, 401: 109004. [11] GUO S L, TAO W Q. A robustness-enhanced method for Riemann solver[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120757. [12] SIMON S, MANDAL J C. A simple cure for numerical shock instability in the HLLC Riemann solver[J]. Journal of Computational Physics, 2019, 378: 477-496. [13] ZHANG F, LIU J, CHEN B S, et al. A robust low-dissipation AUSM-family scheme for numerical shock stability on unstructured grids[J]. International Journal for Numerical Methods in Fluids, 2017, 84(3): 135-151. [14] CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics, 2021, 34(5): 628-641. [15] CHEN S S, YAN C, ZHONG K, et al. A novel flux splitting scheme with robustness and low dissipation for hypersonic heating prediction[J]. International Journal of Heat and Mass Transfer, 2018, 127: 126-137. [16] RODIONOV A V. Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon[J]. Journal of Computational Physics, 2017, 345: 308-329. [17] RODIONOV A V. Artificial viscosity to cure the shock instability in high-order Godunov-type schemes[J]. Computers & Fluids, 2019, 190: 77-97. [18] SHIMA E J, KITAMURA K. Parameter-free simple low-dissipation AUSM-family scheme for all speeds[J]. AIAA Journal, 2011, 49(8): 1693-1709. [19] TORO E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M].3rd ed. Dordrecht: Springer Science & Business Media, 2009: 277-278, 315-345. [20] 谢文佳. 激波捕捉方法的数值稳定性研究[D].长沙: 国防科技大学, 2019: 18-24. XIE W J. On numerical instabilities of shock-capturing methods[D].Changsha: National University of Defense Technology, 2019: 18-24 (in Chinese). [21] DUMBSER M, MOSCHETTA J M, GRESSIER J. A matrix stability analysis of the carbuncle phenomenon[J]. Journal of Computational Physics, 2004, 197(2): 647-670. [22] SHEN Z J, YAN W, YUAN G W. A stability analysis of hybrid schemes to cure shock instability[J]. Communications in Computational Physics, 2014, 15(5): 1320-1342. [23] KITAMURA K, NAKAMURA Y, SHIMA E J. An evaluation of Euler fluxes II: Hypersonic surface heating computation[C]//38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008: 4275. [24] MENART J A, HENDERSON S J. Study of the issues of computational aerothermodynamics using a Riemann solver: AFRL Report 2008-3133[R].Dayton: Defense Technical Information Center, 2008. |