[1] BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat:NASA CR-2582, CR-2583[R]. Washington, D.C.:NASA, 1975:Vol I and II. [2] BURGIN G. Improvements to the adaptive maneuvering logic program:NASA CR 3985[R]. Washington, D.C.:NASA, 1986. [3] GOODRICH K, MCMANUS J. Development of a tactical guidance research and evaluation system (TGRES)[C]//Flight Simulation Technologies Conference and Exhibit. Reston:AIAA, 1989 [4] MCMANUS J, GOODRICH K. Application of artificial intelligence (AI) programming techniques to tactical guidance for fighter aircraft[C]//Guidance, Navigation and Control Conference. Reston:AIAA, 1989 [5] GOODRICH K H. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation[EB/OL]. Hampton:National Aeronautics and Space Administration, 1993. (2010-05-06)[2021-03-10]. https://www.cs.odu.edu/~mln/ltrs-pdfs/tm4440.pdf. [6] ERNEST N, CARROLL D. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1):1-8 [7] SMITH R E, DIKE B A, MEHRA R K, et al. Classifier systems in combat:two-sided learning of maneuvers for advanced fighter aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4):421-437. [8] CLIVE P D, JOHNSON J A, MOSS M J, et al. Advanced framework for simulation, integration and modeling (AFSIM) (Case Number:88ABW-2015-2258)[C]//Proceedings of the International Conference on Scientific Computing (CSC),2015. [9] MCGREW J S. Real-time maneuvering decisions for autonomous air combat[D]. Cambridge:Massachusetts Institute of Technology, 2008:91-104. [10] 薛羽, 庄毅, 张友益, 等. 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J]. 航空学报, 2013, 34(2):343-351. XUE Y, ZHUANG Y, ZHANG Y Y, et al. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):343-351(in Chinese). [11] ABBEEL P, COATES A, QUIGLEY M, et al. An application of reinforcement learning to aerobatic helicopter flight[C]//SCHÖLKOPF B, PLATT J, HOFMANN T. Advances in Neural Information Processing Systems 19:Proceedings of the 2006 Conference, 2007:1-8. [12] Defense Advanced Research Projects Agency. AlphaDogfight trials go virtual for final event[EB/OL]. (2020-08-07)[2021-03-10]. https://www.darpa.mil/news-events/2020-08-07. [13] THERESA H. DARPA's AlphaDogfight tests AI pilot's combat chops[EB/OL]. (2020-08-18)[2021-03-10]. https://breakingdefense.com/2020/08/darpas-alphadogfight-tests-ai-pilots-combat-chops/. [14] Air Force Research Lab. Skyborg program seeks industry input for artificial intelligence initiative[EB/OL]. (2019-05-26)[2021-03-10]. https://afresearchlab.com/news/skyborg-program-seeks-industry-input-for-artificial-intelligence-initiative-2/. [15] US Department of Defense. Summary of the 2018 Department of Defense artificial intelligence strategy[EB/OL]. (2018-11-08)[2021-03-10]. http://www.defense-aerospace.com/articles-view/reports/2/199929/pentagon-releases-artificial-intelligence-strategy.html. [16] The Networking and Information Technology Research and Development (NITRD) Program. The national artificial intelligence research and development strategic plan:2019 update[EB/OL]. (2019-07-21)[2021-03-10]. https://www.nitrd.gov/news/National-AI-RD-Strategy-2019.aspx. [17] MYERSON R B. Game theory[M]. London:Harvard University Press, 2013:1. [18] XU G Y, LIU Q, ZHANG H. The application of situation function in differential game problem of the air combat[C]//2018 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2018:1190-1195. [19] VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1080-1091. [20] WEINTRAUB I E, PACHTER M, GARCIA E. An introduction to pursuit-evasion differential games[C]//2020 American Control Conference (ACC). Piscataway:IEEE Press, 2020:1049-1066. [21] PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2):204-213. [22] ALKAHER D, MOSHAIOV A. Dynamic-escape-zone to avoid energy-bleeding coasting missile[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(10):1908-1921. [23] ZHENG H Y, DENG Y, HU Y. Fuzzy evidential influence diagram and its evaluation algorithm[J]. Knowledge-Based Systems, 2017, 131:28-45. [24] SHACHTER R D. Evaluating influence diagrams[J]. Operations Research, 1986, 34(6):871-882. [25] KOLLER D, MILCH B. Multi-agent influence diagrams for representing and solving games[C]//Proceedings of the 17th International Joint Conference of Artificial Intelligence,2001:319-328. [26] KOLLER D, MILCH B. Multi-agent influence diagrams for representing and solving games[J]. Games and Economic Behavior, 2003, 45(1):181-221. [27] VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot's sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4):665-677. [28] PAN Q, ZHOU D Y, HUANG J C, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]//2017 IEEE International Conference on Information and Automation (ICIA). Piscataway:IEEE Press, 2017:726-731. [29] HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1):86-97. [30] SPRINKLE J, EKLUND J M, KIM H J, et al. Encoding aerial pursuit/evasion games with fixed wing aircraft into a nonlinear model predictive tracking controller[C]//2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). Piscataway:IEEE Press, 2004:2609-2614. [31] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3):322493. ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322493(in Chinese). [32] KANESHIGE J, KRISHNAKUMAR K. Artificial immune system approach for air combat maneuvering[C]//Proceeding of the SPIE, 2007. [33] JI H M, YU M J, HAN Q S, et al. Research on the air combat countermeasure generation based on improved TIMS model[J]. Journal of Physics:Conference Series, 2018, 1069:012039. [34] 国海峰, 侯满义, 张庆杰, 等. 基于统计学原理的无人作战飞机鲁棒机动决策[J]. 兵工学报, 2017, 38(1):160-167. GUO H F, HOU M Y, ZHANG Q J, et al. UCAV robust maneuver decision based on statistics principle[J]. Acta Armamentarii, 2017, 38(1):160-167(in Chinese). [35] WANG Y, HUANG C Q, TANG C L. Research on unmanned combat aerial vehicle robust maneuvering decision under incomplete target information[J]. Advances in Mechanical Engineering, 2016, 8(10):168781401667438. [36] YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access, 2019, 8:363-378. [37] 傅莉, 谢福怀, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11):1994-1999. FU L, XIE F H, MENG G L, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1994-1999(in Chinese). [38] 王锐平, 高正红. 无人机空战仿真中基于机动动作库的决策模型[J]. 飞行力学, 2009, 27(6):72-75, 79. WANG R P, GAO Z H. Research on decision system in air combat simulation using maneuver library[J]. Flight Dynamics, 2009, 27(6):72-75, 79(in Chinese). [39] BURGIN G H, SIDOR L B. Rule-based air combat simulation[EB/OL]. La Jolla:National Aeronautics and Space Administration, 1988. (2009-06-05)[2021-03-10]. https://apps.dtic.mil/sti/pdfs/ADA257194.pdf. [40] BERCHTOLD S, BÖHM C, KRIEGAL H P. The pyramid-technique:towards breaking the curse of dimensionality[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of data-SIGMOD '98. New York:ACM Press, 1998:142-153. [41] GENG W X, KONG F E, MA D Q. Study on tactical decision of UAV medium-range air combat[C]//The 26th Chinese Control and Decision Conference (2014 CCDC). Piscataway:IEEE Press, 2014:135-139. [42] CUBUK E D, ZOPH B, MANE D, et al. AutoAugment:learning augmentation policies from data[DB/OL]. arXiv preprint:1805.09501, 2019. [43] ALIKANIOTIS D, YANNAKOUDAKIS H, REI M. Automatic text scoring using neural networks[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 2016. [44] JEONG C S, LEE J Y, JUNG K D. Adaptive recommendation system for tourism by personality type using deep learning[J]. International Journal of Internet, Broadcasting and Communication, 2020,12(1):55-60. [45] BAIN M. A framework for behavioral cloning[J]. Machine Intelligence, 1996, 15:103-129. [46] RODIN E Y, MASSOUD AMIN S. Maneuver prediction in air combat via artificial neural networks[J]. Computers & Mathematics With Applications, 1992, 24(3):95-112. [47] SCHVANEVELDT R W, BENSON A E, GOLDSMLTH T E. Neural network models of air combat maneuvering:AD-A254653[R]. Texas:Williams Air Force Base, 1992. [48] TENG T H, TAN A H, TAN Y S, et al. Self-organizing neural networks for learning air combat maneuvers[C]//The 2012 International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE Press, 2012:1-8. [49] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489. [50] VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575(7782):350-354. [51] BOTVINICK M, WANG J X, DABNEY W, et al. Deep reinforcement learning and its neuroscientific implications[J]. Neuron, 2020, 107(4):603-616. [52] NGUYEN N D, NGUYEN T, NAHAVANDI S. System design perspective for human-level agents using deep reinforcement learning:a survey[J]. IEEE Access, 2017, 5:27091-27102. [53] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [54] 丁林静, 杨啟明. 基于强化学习的无人机空战机动决策[J]. 航空电子技术, 2018, 49(2):29-35. DING L J, YANG Q M. Research on air combat maneuver decision of UAVs based on reinforcement learning[J]. Avionics Technology, 2018, 49(2):29-35(in Chinese). [55] LIU P, MA Y F. A deep reinforcement learning based intelligent decision method for UCAV air combat[M]//Communications in Computer and Information Science. Singapore:Springer Singapore, 2017:274-286. [56] 左家亮, 杨任农, 张滢, 等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017, 38(10):321168. ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):321168(in Chinese). [57] ZHANG X B, LIU G Q, YANG C J, et al. Research on air combat maneuver decision-making method based on reinforcement learning[J]. Electronics, 2018, 7(11):279. [58] PIAO H. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]//International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE Press, 2020. [59] HEUILLET A, COUTHOUIS F, DÍAZ-RODRÍGUEZ N. Explainability in deep reinforcement learning[J]. Knowledge-Based Systems, 2021, 214:106685. [60] MONTAVON G, SAMEK W, MVLLER K R. Methods for interpreting and understanding deep neural networks[J]. Digital Signal Processing, 2018, 73:1-15. [61] YUAN W H, HANG K Y, KRAGIC D, et al. End-to-end nonprehensile rearrangement with deep reinforcement learning and simulation-to-reality transfer[J]. Robotics and Autonomous Systems, 2019, 119:119-134. [62] BROWN N, SANDHOLM T. Superhuman AI for multiplayer poker[J]. Science, 2019, 365(6456):885-890. [63] HERNANDEZ-LEAL P, KARTAL B, TAYLOR M E. A survey and critique of multiagent deep reinforcement learning[J]. Autonomous Agents and Multi-Agent Systems, 2019, 33(6):750-797. [64] SILVA F L D, COSTA A H R. A survey on transfer learning for multiagent reinforcement learning systems[J]. Journal of Artificial Intelligence Research, 2019, 64:645-703. [65] BROWN N, SANDHOLM T. Solving imperfect-information games via discounted regret minimization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:1829-1836. [66] SCHOFIELD M, THIELSCHER M. General game playing with imperfect information[J]. Journal of Artificial Intelligence Research, 2019, 66:901-935. [67] DOSHI-VELEZ F, KIM B. Towards A rigorous science of interpretable machine learning[DB/OL]. arXiv preprint:1702.08608, 2017. [68] LIPTON Z C. The mythos of model interpretability:In machine learning, the concept of interpretability is both important and slippery[J]. Queue, 2018,16(3):31-57. [69] ZHANG X, SOLAR-LEZAMA A, SINGH R. Interpreting neural network judgments via minimal, stable, and symbolic corrections[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018:4879-4890. [70] RUSU A A, VECERIK M, ROTHÖRL T, et al. Sim-to-real robot learning from pixels with progressive nets[DB/OL]. arXiv preprint:1610.04286, 2018. [71] 孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题[J]. 自动化学报, 2020, 46(7):1301-1312. SUN C Y, MU C X. Important scientific problems of multi-agent deep reinforcement learning[J]. Acta Automatica Sinica, 2020, 46(7):1301-1312(in Chinese). [72] LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Proceedings of the 31 st International Conference on Neural Information Processing Systems, 2017:6382-6393. [73] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese). |