[1] WAN L L, LI L, DENG Z H, et al. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics[J]. Journal of Manufacturing Processes, 2019, 47:41-51. [2] 卞红,胡胜鹏,宋晓国,等. 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017, 38(12):421402. BIAN H, HU S P, SONG X G. et al. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421402(in Chinese). [3] YANG M, LI C H, ZHANG Y B, et al. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions[J]. Ceramics International, 2019, 45(12):14908-14920. [4] 任永国,刘自强,杨凯,等. 氧化锆材料种类及应用[J]. 中国陶瓷, 2008, 44(4):44-46. REN Y G, LIU Z Q, YANG K, et al. Kind andapplication of zirconia material[J]. China Ceramics, 2008, 44(4):44-46(in Chinese). [5] 侯永改,田久根,路继红,等. 氧化锆陶瓷磨削加工的研究现状[J]. 中国陶瓷, 2014, 50(9):6-9. HOU Y G, TIAN J G, LU J H, et al. Thecurrent research status of zirconia ceramics grinding[J]. China Ceramics, 2014, 50(9):6-9(in Chinese). [6] YANG M, LI C H, ZHANG Y B, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 2017, 122:55-65. [7] 张能. 纵扭复合振动超声磨削加工工程氧化锆陶瓷机理及工艺研究[D]. 广州:广东工业大学, 2018:1-5. ZHANG N. Study on mechanism and technology of zirconia ceramics with longitudinal-torsional composite vibration ultrasonic grinding machining[D]. Guangzhou:Guangdong University of Technology Guangzhou, 2018:1-5(in Chinese). [8] XIAO X Z, ZHENG K, LIAO W H, et al. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2016, 104:58-67. [9] YANG Z C, ZHU L D, LIN B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding[J]. Ceramics International, 2019, 45(7):8873-8889. [10] 吴雁,孙爱国,赵波,等. Al2O3/ZrO2(n)微-纳米复合陶瓷超声振动精密磨削表面微观特征试验研究[J]. 航空学报, 2007, 28(4):1009-1013. WU Y, SUN A G, ZHAO B, et al. Study on Surface Integrity of Ultrasonic Vibration Grinding for Al2O3/ZrO2(n) Micro-nanocomposites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):1009-1013(in Chinese). [11] CHEN L, ZHANG F H, MENG B B, et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J]. Ceramics International, 2017, 43(3):2981-2993. [12] ZAHEDI A, TAWAKOLI T, AKBARI J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics[J]. International Journal of Machine Tools and Manufacture, 2015, 90:16-28. [13] GUO B, ZHAO Q. Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces[J]. Precision Engineering, 2017, 48:98-106. [14] BARAHENI M, AMINI S. Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding[J]. Ceramics International, 2019, 45(8):10086-10096. [15] GAO T, ZHANG X P, LI C H, et al. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding[J]. Journal of Manufacturing Processes, 2020, 51:44-61. [16] JIA D, LI C H, ZHANG Y, et al. Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):457-473. [17] CHEN J B, FANG Q H, WANG C C, et al. Theoretical study on brittle-ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials[J]. Precision Engineering, 2016, 46:104-117. [18] LV D X, HUANG Y H, WANG H X, et al. Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass[J]. Journal of Materials Processing Technology, 2013, 213(9):1548-1557. [19] 梁志强,田梦,王秋燕,等. 超声辅助磨削陶瓷材料的裂纹产生与扩展仿真研究[J]. 兵工学报, 2016, 37(5):895-902. LIANG Z Q, TIAN M, WANG Q Y, et al. Simulation investigation on crack initiation and propagation in ultrasonic assisted grinding of ceramics material[J]. Acta Armamentarii, 2016, 37(5):895-902(in Chinese). [20] XU H H K,JAHANMIR S,IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina[J]. Machining Science and Technology, 1997, 1(1):49-66. [21] WANG B, LIU Z Q, SU G S, et al. Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104:44-59. [22] JOHNSON G R, HOLMQUIST T J, BEISSEL S R. Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 2003, 94(3):1639-1646. [23] LI K N, WANG Y W, ZHAO Y J, et al. High strain rate of quartz glass and its effects during high-speed dicing[J]. Ceramics International, 2019, 45(10):13523-13529. [24] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society. A:Mathematical, Physical and Engineering Sciences, 1921:163-198. [25] 闫艳燕. 纳米复相陶瓷二维超声振动辅助磨削机理及其表面质量研究[D]. 上海:上海交通大学,2008:57-58. YAN Y Y. Study on two dimensional ultrasonic vibration assisted grinding mechanism of nanocomposite ceramics and its surface quality[D]. Shanghai:Shanghai Jiao Tong University, 2008:57-58(in Chinese). [26] SOLHTALAB A, ADIBI H, ESMAEILZARE A, et al. Cup wheel grinding-induced subsurface damage in optical glass BK7:An experimental, theoretical and numerical investigation[J]. Precision Engineering, 2019, 57:162-175. [27] LI S Y, WANG Z, WU Y L. Relationship between subsurface damage and surface roughness of ground optical materials[J]. Journal of Central South University of Technology, 2007, 14(4):546-551. [28] BARAHENI M, AMINI S. Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding[J]. Ceramics International, 2019, 45(8):10086-10096. [29] GU W B, YAO Z Q, LI H L. Investigation of grinding modes in horizontal surface grinding of optical glass BK7[J]. Journal of Materials Processing Technology, 2011, 211(10):1629-1636. [30] ZHANG B,YIN J F. The "skin effect" of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing. 2019, 1:012007. |