[1] ROBOAM X, SARENI B, ANDRADE A D. More electricity in the air:toward optimized electrical networks embedded in more-electrical aircraft[J]. IEEE Industrial Electronics Magazine, 2012, 6(4):6-17. [2] ROSERO J A, ORTEGA J A, ALDABAS E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3):3-9. [3] 王莉, 戴泽华, 杨善水, 等. 电气化飞机电力系统智能化设计研究综述[J]. 航空学报, 2019, 40(2):522405. WANG L, DAI Z H, YANG S S, et al. Review of intelligent design of electrified aircraft power system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522405(in Chinese). [4] 朱德明, 李进才, 韩建斌, 等. 起动发电机在中国大型客机上的应用[J]. 航空学报, 2019, 40(1):522479. ZHU D M, LI J C, HAN J B, et al. Application prospect of starter/generator on large civil aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522479(in Chinese). [5] 李永锋. 宽体客机飞控电作动系统设计[J]. 航空学报, 2017, 38(S1):148-156. LI Y F. Electrically powered actuation system design for long range wide body commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):148-156(in Chinese). [6] 程龙, 张方华, 谢敏, 等. 基于等效时间的混合储能系统高功率密度优化配置[J]. 航空学报, 2018, 39(10):322129. CHENG L, ZHANG F H, XIE M, et al. High power density optimal configuration for hybrid energy storage system based on equivalent time[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):322129(in Chinese). [7] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese). [8] SERESINHE R, LAWSON C, SABATINI R. Environmental impact assessment, on the operation of conventional and more electric large commercial aircraft[J]. SAE International Journal of Aerospace, 2013, 6(1):56-64. [9] SARLIOGLU B, MORRIS C T. More electric aircraft:review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1):54-64. [10] TAYLOR E, CROKE D, SPECK E. The use of high voltage direct current in aircraft electrical systems-A navy perspective[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA:SAE International, 1991. [11] ROBBINS D, BOBALIK J, DE STENA D, et al. F-35 subsystems design, development & verification[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018:1-23. [12] WHYATT G A, CHICK L A. Electrical generation for more-electric aircraft using solid oxide fuel cells[R]. Oak Ridge:Office of Scientific and Technical Information (OSTI), 2012. [13] BOICE W K, LEVOY L G. Basic considerations in selection of electric systems for large aircraft[J]. Electrical Engineering, 1944, 63(6):279-287. [14] Parallel operation of main-engine-driven 400-cycle aircraft generators[J]. Electrical Engineering, 1945, 64(12):987-991. [15] CALDWELL S C, WOOD A J. The effects of abnormal conditions on aircraft, parallel A-C power systems[J]. Transactions of the American Institute of Electrical Engineers, Part II:Applications and Industry, 1954, 72(6):379-386. [16] LARSON L R. Parallel operation of aircraft A-C generators[J]. Electrical Engineering, 1953, 72(11):1021. [17] ANDERSON H C, CRARY S B, SCHULTZ N R. Present D-C aircraft electric-supply systems[J]. Electrical Engineering, 1944, 63(6):265-272. [18] MUEHLBAUER K, GERLING D. Two-generator-concepts for electric power generation in More Electric Aircraft Engine[C]//The XIX International Conference on Electrical Machines-ICEM 2010. Piscataway:IEEE Press, 2010:1-5. [19] GAO F, BOZHKO S, COSTABEBER A, et al. Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12):9271-9281. [20] LIU F P, XU L, LI Y D, et al. Permanent magnet synchronous machine starter/generators based high-voltage DC parallel electric power system for the more electric aircraft[J]. The Journal of Engineering, 2018(13):565-569. [21] XU Y W, ZHANG Z R, LI J C, et al. Current sharing in the high voltage DC parallel electric power system for the More Electric Aircraft[C]//2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). Piscataway:IEEE Press, 2016:1-6. [22] 周瑶. 基于CAN总线的并联直流发电机数字控制技术研究[D]. 南京:南京航空航天大学, 2011. ZHOU Y. Research on the digital control technology of parallel DC generators based on CAN bus[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese). [23] CHEN J W, WANG C J, CHEN J. Investigation on the selection of electric power system architecture for future more electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2):563-576. [24] XU Y W, ZHANG Z R, LI J C, et al. Architecture analysis and optimization of high voltage DC parallel electric power system for more electric aircraft[C]//2016 IEEE International Conference on Aircraft Utility Systems (AUS). Piscataway:IEEE Press, 2016:244-249. [25] 李永东, 章玄, 许烈. 多电飞机高压直流供电系统稳定性研究综述[J]. 电源学报, 2017, 15(2):2-11. LI Y D, ZHANG X, XU L. A survey on stability analysis for HVDC power system in MEA[J]. Journal of Power Supply, 2017, 15(2):2-11(in Chinese). [26] WHEELER P, CLARE J, BOZHKO S, et al. Regeneration in aircraft electrical power systems?[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA, United States:SAE International, 2008 [27] GANEV E, SARLIOGLU B. Improving load regeneration capability of an aircraft[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA, United States:SAE International, 2009. [28] GANEV E D, SARLIOGLU B. Improving peak power capability of an aircraft[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA, United States:SAE International, 2010. [29] ZHANG Z R, YU L, WANG Y T, et al. Overview and design methodology of doubly salient brushless dc generators with stator-field winding[J]. IET Electric Power Applications, 2017, 11(2):197-211. [30] XU Y W, ZHANG Z R, YU L, et al. Behavior and functional modeling methods of doubly salient electromagnetic generators for aircraft electrical power system applications[J]. Chinese Journal of Aeronautics, 2019, 32(2):477-488. [31] XU Y W, ZHANG Z R, BIAN Z M, et al. Copper loss optimization based on bidirectional converter for doubly salient brushless starter/generator system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6):4769-4779. |