[1] VAN ZON N C M, BORST C, POOL D M, et al. Touchscreens for aircraft navigation tasks:Comparing accuracy and throughput of three flight deck interfaces using fitts' law[J]. Human Factors, 2020, 62(6):897-908. [2] COUTTS L V, PLANT K L, SMITH M, et al. Future technology on the flight deck:assessing the use of touchscreens in vibration environments[J]. Ergonomics, 2019, 62(2):286-304. [3] AVSAR H, FISCHER J E, RODDEN T. Mixed method approach in designing flight decks with touch screens:a framework[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2016:1-10. [4] ROUWHORST W, VERHOEVEN R, SUIJKERBUIJK M, et al. Use of touch screen display applications for aircraft flight control[C]//2017 IEEE/AIAA 36th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2017:1-10. [5] AVSAR H, FISCHER J, RODDEN T. Target size guidelines for interactive displays on the flight deck[C]//2015 IEEE/AIAA 34th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2015:3C4-1-3C4-15. [6] ORPHANIDES A K, NAM C S. Touchscreen interfaces in context:A systematic review of research into touchscreens across settings, populations, and implementations[J]. Applied Ergonomics, 2017, 61:116-143. [7] SAE. Touch interactive display systems:Human factors considerations, system design and performance gui-delines:SAE ARP60494[S]. Warrendale:SAE Inter-national, 2019. [8] KAMINANI S. Human computer interaction issues with touch screen interfaces in the flight deck[C]//2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011:6B4-1-6B4-7. [9] COCKBURN A, AHLSTRÖM D, GUTWIN C. Understanding performance in touch selections:Tap, drag and radial pointing drag with finger, stylus and mouse[J]. International Journal of Human-Computer Studies, 2012, 70(3):218-233. [10] GAUCI J. Design and evaluation of a touch screen concept for pilot interaction with avionic systems[C]//2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2015:1-32. [11] FAA. Advisory Circular:Controls for flight deck systems:AC 20-175[S]. Washington, D.C.:Federal Aviation Administration, 2011. [12] FAA. Advisory circular:Installed systems and equipment for use by the flightcrew document information:AC 25.13021[S]. Washington, D.C.:Federal Aviation Administration, 2013. [13] CHO J, LEE J. Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach[J]. Expert Systems with Applications, 2013, 40(13):5314-5330. [14] 夏春艳. 核电厂主控室人机界面评价方法研究[D]. 哈尔滨:哈尔滨工程大学, 2010. XIA C Y. Study on human-machine interface evaluation method for main control room of nuclear power plant[D]. Harbin:Harbin Engineering University, 2010(in Chinese). [15] WANG X L, ZHANG J, ZENG R, et al. Analysis of the application of touch screen in civil aircraft cockpit[M]//Lecture Notes in Electrical Engineering. Singapore:Springer Singapore, 2019:2439-2451. [16] 董大勇, 俞金海, 李宝峰, 等. 民机驾驶舱人为因素适航符合性验证技术[J]. 航空学报, 2016, 37(1):310-316. DONG D Y, YU J H, LI B F, et al. Airworthiness compliance certification technology of civil aircraft flight deck human factor[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):310-316(in Chinese). [17] SAE. Minimum performance standard for airborne multipurpose electronic displays:SAE AS8034C[S]. Warrendale:SAE International, 2018. [18] STROUD K, PICKETT L, TILLMAN B. NASA human integration design handbook (HIDH):Revitalization of space-related human factors, environmental, and habit-ability data and design guidance[R]. Houston:NASA Johnson Space Center, 2008. [19] WATKINS C B, NILSON C, TAYLOR S, et al. Development of touchscreen displays for the gulfstream g500 and g600 symmetryTM flight deck[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2018:1-10. [20] AHLSTROM V. Human factors design standard:DOT/FAA/HF-STD-001B[S]. Washington, D.C.:Federal Aviation Administration,2016. [21] FAA. Advisory Circular:electronic flight displays document information:AC 25-11B[S]. Washington, D.C.:Federal Aviation Administration, 2014. [22] SAE. Electronic displays:SAE ARP4102/7[S]. Warr-endale:SAE International, 2007. [23] SAE. Flight deck panels, controls, and displays:SAE ARP4102[S]. Warrendale:SAE International, 2007. [24] RTCA. DO-160G Change 1, Environmental conditions and test procedures for airborne equipment[S]. Washington, D.C.:Radio Technical Commission for Aeronautics, 2014. [25] FAA. Airborne multipurpose electronic displays:TSO-C113a[S]. Washington, D.C.:Federal Aviation Administration, 2012. [26] DOD M S. Design criteria standard human engineering MIL-STD-1472G[S]. Washington, D.C.:Department of Defense, 2012. [27] FAA. Advisory Circular:Guidelines for the certification, airworthiness, and operational use of electronic flight bags:AC 120-76D[S]. Washington, D.C.:Federal Aviation Administration, 2017. [28] YEH M, JO Y J, DONOVAN C, et al. Human factors considerations in the design and evaluation of flight deck displays and controls:No. DOT-VNTSC-FAA-13-09[R]. Cambridge:John A. Volpe National Transpo-rtation Systems Center (US), 2013. [29] ISO. Ergonomics of human-system interaction-Part 910:Framework for tactile and haptic interaction:ISO 9241-910[S]. Geneva:International Organization for Stand-ardization, 2011. [30] ISO. Ergonomics of human-system Interaction-Part 920:Guidance on tactile and haptic interactions:ISO 9241-920[S]. Geneva:International Organization for Standardization, 2009. [31] RTCA. Software considerations in airborne systems and equipment certification:DO-178C[S]. Washington, D.C.:Radio Technical Commission for Aeronautics, 2012. [32] RTCA. Design assurance guidance for airbo-rne electronic hardware:DO-254[S]. Washington, D.C.:Radio Technical Commission for Aeronautics, 2000. [33] 王黎静, 向维, 何雪丽, 等. 机组工作负荷评价新方法及其应用[J]. 北京航空航天大学学报, 2012, 38(7):915-919,940. WANG L J, XIANG W, HE X L, et al. New method to evaluate crew workload and application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):915-919,940(in Chinese). [34] 李银霞, 袁修干, 杨春信, 等. 歼击机座舱工效学综合评价指标体系的建立[J]. 航空学报, 2005, 26(2):148-152. LI Y X, YUAN X G, YANG C X, et al. Building of the index system for fighter cockpit ergonomics comprehensive evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2):148-152(in Chinese). [35] 邓丽, 余隋怀. 基于Fuzzy AHP的司钻控制房人机界面评价[J]. 计算机工程与应用, 2014, 50(4):231-235. DENG L, YU S H. Human-machine interface evaluation of driller control room based on fuzzy AHP[J]. Computer Engineering and Applications, 2014, 50(4):231-235(in Chinese). [36] LIMA F R Jr, OSIRO L, CARPINETTI L C R. A comparison between fuzzy AHP and fuzzy TOPSIS methods to supplier selection[J]. Applied Soft Computing, 2014, 21:194-209. [37] 刘昕, 余隋怀, 王淑侠, 等. 基于Delphi排序改进的AHP-Fuzzy人机布局虚拟评价[J]. 计算机工程与应用, 2015, 51(3):24-30. LIU X, YU S H, WANG S X, et al. Virtual assessment of ergonomic layout based on AHP-fuzzy improved by Delphi sequence[J]. Computer Engineering and Applications, 2015, 51(3):24-30(in Chinese). [38] 刘启越. 民用飞机驾驶舱人机工效评价方法研究[D]. 南京:南京航空航天大学, 2013. LIU Q Y. Research on evaluation method of the cockpit ergonomics for civil aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). |