[1] |
刘新灵, 陶春虎. FGH96粉末高温合金损伤行为与寿命预测[J]. 失效分析与预防, 2011, 6(2):124-129. LIU X L, TAO C H. Damage behavior and life prediction of FGH96 powder metallurgy superalloy[J]. Failure Analysis and Prevention, 2011, 6(2):124-129(in Chinese).
|
[2] |
魏大盛, 王延荣. 粉末冶金涡轮盘裂纹扩展寿命分析[J]. 推进技术, 2008, 29(6):753-758. WEI D S, WANG Y R. Lifing methodology of crack propagation in powder metallurgy turbine disk[J]. Journal of Propulsion Technology, 2008, 29(6):753-758(in Chinese).
|
[3] |
TRESA M P, SAMMY T. Nickel-based superalloys for advanced turbine engines:Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-373.
|
[4] |
胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状[J]. 粉末冶金工业, 2018, 28(4):1-6. HU L X, FENG X Y. The research and development of powder metallurgy superalloy[J]. Powder Metallurgy Industry, 2018, 28(4):1-6(in Chinese).
|
[5] |
魏大盛, 杨晓光, 王延荣, 等. 保载条件下FGH95材料的疲劳特性及寿命建模[J]. 航空动力学报, 2007, 22(3):425-430. WEI D S, YANG X G, WANG Y R, et al. Fatigue characteristics FGH95 PM superalloy under dwell condition and modeling for life prediction[J]. Journal of Aerospace Power, 2007, 22(3):425-430(in Chinese).
|
[6] |
田长生, 乔生儒, 陶冶, 等. GH36合金在疲劳和蠕变交互作用下的失效寿命[J]. 航空学报, 1987, 8(11):632-636. TIAN C S, QIAO S R, TAO Y, et al. The failure life of GH36 alloy in fatigue and creep interaction[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11):632-636(in Chinese).
|
[7] |
姚萍, 王润梓, 郭素娟, 等. GH4169合金蠕变疲劳行为的有限元模拟及寿命预测[J]. 航空学报, 2018, 39(12):422193. YAO P, WANG R Z, GUO S J, et al. Finite element simulations of creep-fatigue behavior and life assessment of GH4169 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422193(in Chinese).
|
[8] |
GOSWAMI T. Dwell sensitivity:Part I behavior and modeling[J]. Mechanics of Materials, 1996, 22(2):105-130.
|
[9] |
GOSWAMI T, HANNINEN H. Dwell effects on high temperature fatigue behavior:Part I[J]. Materials and Design, 2001, 22(3):199-215.
|
[10] |
GOSWAMI T. A new dwell sensitivity damage parameter[J]. Materials and Design, 2004, 25(3):191-197.
|
[11] |
蒋祖国. 估算低周腐蚀疲劳寿命的几个模型[J]. 航空学报, 1989, 10(6):254-258. JIANG Z G. Several models to predict the low cyclic corrosion fatigue life[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(6):254-258(in Chinese).
|
[12] |
SALTSMAN J F, HALFORD G R. Procedures for characterizing an alloy and predicting cyclic life with the total strain version of strain range partitioning:NASA-TM-4102[R]. Cleveland:NASA Lewis Research Center, 1989.
|
[13] |
KWAI S C, MICHAEL P E, JONATHAN M, et al. Mitigating time-dependent crack growth in Ni-base superalloy components[J]. International Journal of Fatigue, 2016, 82:332-341.
|
[14] |
郭茂文, 刘春荣, 郑雪萍, 等. 粉末高温合金的研究现状[J]. 热加工工艺, 2017, 46(20):11-13. GUO M W, LIU C R, ZHENG X P, et al. Research status of powder metallurgy superalloy[J]. Hot Working Technology, 2017, 46(20):11-13(in Chinese).
|
[15] |
韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状[J]. 中国材料进展, 2014, 33(12):748-754. HAN Z Y, ZENG G, LIANG S J, et al. Development in powder production technology of Ni-based superalloy[J]. Materials China, 2014, 33(12):748-754(in Chinese).
|
[16] |
苏运来, 陆山, 杨茂, 等. 考虑缺口和体积效应的轮盘等效体积概率寿命分析方法[J]. 推进技术, 2018, 39(12):2820-2827. SU Y L, LU S, YANG M, et al. Equivalent volume analysis method accounting for notch effect and volume effect on probabilistic fatigue life estimation for disk[J]. Journal of Propulsion Technology, 2018, 39(12):2820-2827(in Chinese).
|
[17] |
苏运来, 陆山, 杨茂, 等. 任意应力比下涡轮盘的塑性应变能寿命模型[J]. 航空动力学报, 2017, 32(4):828-834. SU Y L, LU S, YANG M, et al. Plastic strain energy-life model of turbine disk under various stress ratios[J]. Journal of Propulsion Technology, 2017, 32(4):828-834(in Chinese).
|
[18] |
WANG Y R, WANG X C, ZHONG B, et al. Estimation of fatigue parameters in total strain life equation for powder metallurgy superalloy FGH96 and other metallic materials[J]. International Journal of Fatigue, 2019, 122:116-124.
|
[19] |
刘晓菲. FGH96粉末高温合金疲劳小裂纹扩展行为及寿命预测研究[D]. 南昌:南昌航空大学, 2019:55-88. LIU X F. Study on small crack propagation behavior and life prediction of FGH96 powder superalloy[D]. Nanchang:Nanchang Hangkong University, 2019:55-88(in Chinese).
|
[20] |
胡绪腾. 粉末高温合金高温疲劳寿命模型研究[D]. 南京:南京航空航天大学, 2005:78-105. HU X T. Research on high temperature fatigue life models of powder metallurgy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:78-105(in Chinese).
|
[21] |
张国栋, 何玉怀, 苏彬. 粉末高温合金FGH95和FGH96的热机械疲劳性能[J]. 航空材料学报, 2011, 31(6):96-100. ZHANG G D, HE Y H, SU B. Thermal-mechanical fatigue performance of powder metallurgy superalloy FGH95 and FGH96[J]. Journal of Aeronautical Materials, 2011, 31(6):96-100(in Chinese).
|
[22] |
冯引利, 吴长波, 郜伟强, 等. FGH96涡轮盘低循环疲劳寿命分析技术与试验[J]. 航空动力学报, 2012, 27(3):628-634. FENG Y L, WU C B, GAO W Q, et al. Analysis technology and experiment for FGH96 disk's LCF life[J]. Journal of Aerospace Power, 2012, 27(3):628-634(in Chinese).
|
[23] |
冯引利, 杨健, 吴长波. 考虑表面加工状态的粉末盘低循环疲劳寿命分析[J]. 航空动力学报, 2018, 33(2):265-272. FENG Y L, YANG J, WU C B. Analysis of powder alloy disk's low cycle fatigue life with surface machining status[J]. Journal of Aerospace Power, 2018, 33(2):265-272(in Chinese).
|
[24] |
姚志浩, 董建新, 张麦仓, 等. 组织特征对粉末高温合金FGH96疲劳裂纹扩展速率的影响[J]. 机械工程学报, 2013, 49(20):158-164. YAO Z H, DONG J X, ZHANG M C, et al. Effects of microstructure characteristics on fatigue crack growth rate of powder metallurgy superalloy FGH96[J]. Journal of Mechanical Engineering, 2013, 49(20):158-164(in Chinese).
|
[25] |
聂潇乾, 张成成, 王润梓, 等. 粉末冶金FGH96镍基高温合金的蠕变-疲劳交互行为[J]. 机械工程材料, 2019, 43(6):8-11. NIE X Q, ZHANG C C, WANG R Z, et al. Creep-fatigue interaction behavior of powder metallurgy nickel-based superalloy FGH96[J]. Materials for Mechanical Engineering, 2019, 43(6):8-11(in Chinese).
|
[26] |
魏大盛, 王延荣, 王相平, 等. 基于应力循环特征的裂纹萌生寿命预测方法[J]. 航空动力学报, 2012, 27(10):2342-2347. WEI D S, WANG Y R, WANG X P, et al. Life prediction method based on characteristic of cyclic stress[J]. Journal of Aerospace Power, 2012, 27(10):2342-2347(in Chinese).
|
[27] |
SMITH R N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5:767-778.
|
[28] |
MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17:169-172.
|
[29] |
张智胜. 航空发动机涡轮盘疲劳寿命预测与动态可靠性分析[D]. 成都:电子科技大学, 2014:41-42. ZHANG Z S. Life prediction and dynamic reliability analysis of aircraft turbine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2014:41-42(in Chinese).
|