[1] 陈卫东, 唐小平, 曾奎, 等. 基于工程和数值方法的导弹气动特性计算[J]. 航空计算技术, 2012, 42(3):1-5. CHEN W D, TANG X P, ZENG K, et al. Calculation of missile aerodynamic characteristics based on engineering and numerical methods[J]. Aeronautical Computing Technique, 2012, 42(3):1-5(in Chinese). [2] ROSEMA C, DOYLE J, AUMAN L, et al. Missile datcom user's manual-2011 revision[R]. Army Aviation and Missile Research Development Eng Ctr Redstone Arsenal Al System Simulation and Development Directorate, 2011. [3] ROSEMA C C. A comparison of predictive methodologies for missile configurations with strakes[C]//33rd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2015. [4] LEVIN D, SIGAL A. Wind tunnel tests of a missile having elliptic cross sectioned body[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2002. [5] ABNEY E, MCDANIEL M. High angle of attack aerodynamic predictions using missile datcom[C]//23rd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2005. [6] COIRIER W J, STUTTS J, ROSEMA C C. Development of a transonic fin aerodynamic database for incorporation into missile datcom[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014. [7] DESPIRITO J. CFD aerodynamic characterization of 155-mm projectile at high angles-of-attack[C]//35th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2017. [8] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese). [9] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计综述方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese). [10] AHEMD M Y. Surrogates for the aerodynamic coefficients of supersonic airfoils[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [11] 彭博, 聂蓉梅, 陈海东. 基于支持向量机的火箭气动学科代理模型构建方法[J]. 导弹与航天运载技术, 2013(4):33-37. PENG B, NIE R M, CHEN H D. Surrogate model construction for rocket aerodynamic discipline based on support vector machine[J]. Missiles and Space Vehicles, 2013(4):33-37(in Chinese). [12] CARPENTER M, HARTFIELD R, BURKHALETR J. A comprehensive approach to cataloging missile aerodynamic performance using surrogate modeling techniques and statistical learning[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [13] RITZ S G, HARTFIELD R J, DANLEN J A, et al. Rapid calculation of missile aerodynamic coefficients using artificial neural networks[C]//2015 IEEE Aerospace Conference, 2015:1-19. [14] HAN Z H, GORTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896. [15] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [16] ÇETINER A E, YSGIZ B, GUZEL G, et al. CFD based response surface modeling with an application in missile aerodynamics[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. [17] WILLIAMS C K I, RASMUSSEN C E. Gaussian processes for machine learning[M]. Cambridge:MIT Press, 2006. [18] ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018. [19] YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2017. [20] 韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019,40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese). [21] 韩少强, 宋文萍, 韩忠华, 等. 基于梯度增强型Kriging模型的气动反设计方法[J]. 航空学报, 2017, 38(7):120817. HAN S Q, SONG W P, HAN Z H, et al. Aerodynamic inverse design method based on gradient-enhanced Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120817(in Chinese). [22] LIU Z J, LIU X J, LYU H Q. A new hybrid aerodynamic optimization framework based on differential evolution and invasive weed optimization[J]. Chinese Journal of Aeronautics, 2018, 31(7):1437-1448. [23] LE N D, ZIDEK J V. Statistical analysis of environmental space-time processes[M]. Springer Science & Business Media, 2006. [24] DUVENAUD D, LLOYD J R, GROSSE R, et al. Structure discovery in nonparametric regression through compositional kernel search[DB/OL]. arXiv preprint:1302.4922, 2013. [25] REGGENTE M, PETERS J, THEUNIS J, et al. Prediction of ultrafine particle number concentrations in urban environments by means of Gaussian process regression based on measurements of oxides of nitrogen[J]. Environmental Modelling & Software, 2014, 61:135-150. [26] RICHARDSON R R, OSBORNE M A, HOWEY D A, et al. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017,357:209-219. [27] TOLBA H, DKHILI N, NOU J, et al. GHI forecasting using Gaussian process regression[C]. 2019. [28] 高赫, 刘学军, 郭晋, 等. 基于高斯过程回归的连续式风洞马赫数控制[J]. 空气动力学学报, 2019, 37(3):480-487. GAO H, LIU X J, GUO J, et al. Mach number control of continuous wind tunnel based on Gaussian process regression[J]. Acta Aerodynamica Sinica, 2019, 37(3):480-487(in Chinese). [29] HU J, WANG J. Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression[J]. Energy, 2015, 93:1456-1466. [30] DUVENAUD D. Automatic model construction with Gaussian processes[D]. Cambridge:University of Cambridge, 2014:1-47. [31] MICCHELLI C A, XU Y, ZHANG H. Universal kernels[J]. Journal of Machine Learning Research, 2006, 7:2651-2667. [32] DUVENAUD D K, NICKISCH H, RASMUSSEN C E. Additive gaussian processes[C]//Advances in Neural Information Processing Systems, 2011:226-234. [33] SCHWARZ G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464. [34] RASMUSSEN C E, NICKISCH H. The gpml toolbox version 4.0[R]. 2016. |