航空学报 > 2021, Vol. 42 Issue (12): 424816-424816   doi: 10.7527/S1000-6893.2020.24816

叠层穿刺CF/Al复合材料准静态拉伸力学行为与失效机制

沈高峰1, 王振军1, 刘丰华1, 张映锋1,2, 蔡长春1, 徐志锋1, 余欢1   

  1. 1. 南昌航空大学 航空制造工程学院, 南昌 330063;
    2. 西北工业大学 机电工程学院, 西安 710072
  • 收稿日期:2020-10-09 修回日期:2020-11-10 发布日期:2020-12-31
  • 通讯作者: 王振军 E-mail:wangzhj@nchu.edu.cn
  • 基金资助:
    国家自然科学基金(51765045,52165018);航空科学基金(2019ZF056013);江西省自然科学基金重点项目(20202ACBL204010);国防基础科研计划(JCKY2018401C004)

Quasi-static tensile behavior and failure mechanism of laminated puncture CF/Al composites

SHEN Gaofeng1, WANG Zhenjun1, LIU Fenghua1, ZHANG Yingfeng1,2, CAI Changchun1, XU Zhifeng1, YU Huan1   

  1. 1. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2020-10-09 Revised:2020-11-10 Published:2020-12-31
  • Supported by:
    National Natural Science Foundation of China (51765045, 52165018); Aeronautical Science Foundation of China (2019ZF056013); Jiangxi Provincial Natural Science Foundation (20202ACBL204010); National Defense Basic Scientific Research Program of China (JCKY2018401C004)

摘要: 针对新型的叠层穿刺碳纤维织物增强铝基复合材料(CF/Al复合材料),通过细观力学数值模拟与实验结合的方法研究了其在准静态拉伸载荷作用下的渐进损伤与断裂力学行为。复合材料经向拉伸弹性模量、极限强度与断裂应变的实验结果分别为129.61 GPa、630.14 MPa和0.75%,细观力学模型预测误差分别为-9.41%、7.57%和1.33%,均匀化计算的宏观应力-应变曲线与实验曲线总体上相符。经向拉伸变形初期首先出现经/纬纱交织处基体合金的局部损伤,随着拉伸应变量的增大依次发生纬纱和穿刺纱的横向开裂,拉伸变形后期基体合金与经纱失效引起宏观应力-应变曲线的急剧下降,复合材料拉伸断口表现为经纱轴向断裂及纬纱和穿刺纱横向开裂共存的形貌特征,纤维拔出和基体断裂导致的经纱轴向断裂是诱发复合材料最终失效的主要机制。

关键词: 叠层穿刺结构, 铝基复合材料, 细观力学, 损伤演化, 力学性能, 失效机制

Abstract: A novel aluminum matrix composite reinforced with laminated puncture carbon fiber fabric (CF/Al composites) was prepared. The progressive damage and mechanical behavior of the composite subjected to quasi-static tensile loading were investigated by using test and micromechanical simulation method. The test results show that the tensile modulus, ultimate strength and fracture strain are 129.61 GPa, 630.14 MPa, and 0.75%, respectively, and the calculation errors of the above property parameters are -9.41%, 7.57% and 1.33%, respectively. The macroscopic stress-strain curve from the micromechanical simulation agrees well with the test result. At the initial tensile stage, local damages were found in the matrix alloy located between the warp and weft yarns. With the increase of tensile strain, these damage zones accumulated gradually and led to the transverse cracking of weft yarns and piercing yarns in sequence. Thereafter, the warp yarns and matrix alloy failed successively, leading to dramatical dropping of the macroscopic stress-strain curve at the final tensile stage. The tensile fracture morphology was characterized by coexistence of fracture of warp yarns and transverse cracking of weft and piercing yarns. The axial fracture of warp yarns, which was induced by fiber pulling-out and matrix tearing, was the dominant failure mechanism of the composites under the condition of warp-directional tensile loading.

Key words: laminated puncture structure, aluminum matrix composite, micromechanics, damage evolution, mechanical property, failure mechanism

中图分类号: