[1] 冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京:北京理工大学出版社, 2016:352-353. FENG Z G, GUAN C Q, ZHANG H W. An introduction to hypersonic aircraft[M]. Beijing:Beijing Institute of Technology Press, 2016:352-353(in Chinese). [2] 刘晓斌, 徐柯哲, 朱国祥. 双向飞翼空天飞行器概念外形研究[J]. 空气动力学学报, 2017, 35(3):415-420. LIU X B, XU K Z, ZHU G X. Research on bi-directional flying wing space shuttle configuration[J]. Acta Aerodynamica Sinica, 2017, 35(3):415-420(in Chinese). [3] 焦子涵, 付秋军, 邓帆, 等. 全速域可变形飞行器气动布局设计及试验研究[J]. 固体火箭技术, 2017, 40(5):653-659. JIAO Z H, FU Q J, DENG F, et al. Aerodynamic configuration design and experimental study of all-speed morphing aircraft[J]. Journal of Solid Rocket Technology, 2017, 40(5):653-659(in Chinese). [4] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑:技术科学), 2009, 39(11):1828-1835. WANG F M, DING H H, LEI M F. Aerodynamic characteristics research on wide-speed range waverider configuration[J]. Scientia Sinica Ser E-Technologica, 2009, 39(11):1828-1835(in Chinese). [5] LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30:50-65. [6] LI S B, HUANG W, WANG Z G. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China:Information Sciences, 2014, 57(12):128-201. [7] CORDA S. Star-body waveriders with multiple design Mach numbers[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1178-1185. [8] TAKAMA Y. Practical waverider with outer wings for the improvement of low-speed aerodynamic performance[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011:2011-2300. [9] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese). [10] ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151:848-863. [11] ZHAO Z T, HUANG W, YAN L, et al. Low speed aerodynamic performance analysis of vortex lift waveriders with a wide-speed range[J]. Acta Astronautica, 2019, 161:209-221. [12] DAI P, YAN B B, HUANG W, et al. Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider[J]. Aerospace Science and Technology, 2020, 98:105703. [13] LIU C Z, LIU Q, BAI P, et al. Planform-customized waverider design integrating with vortex effect[J]. Aerospace Science and Technology, 2019, 86:438-443. [14] 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 宇航学报, 2018, 39(7):121824. LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):121824(in Chinese). [15] WANG J F, LIU C Z, BAI P, et al. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151:504-510. [16] LI S B, WANG Z G, HUANG W, et al. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology, 2018, 76:291-302. [17] LI S B, LI L Q, HUANG W, et al. Design and investigation of equal cone-variable Mach number waverider in hypersonic flow[J]. Aerospace Science and Technology, 2020, 96:105540. [18] ZHAO Z T, HUANG W, LI S B, et al. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147:163-174. [19] LIU J, LIU Z, WEN X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162:160-167. [20] ZHAO Z T, HUANG W, YAN L, et al. An overview of research on wide-speed range waverider configuration[J]. Progress in Aerospace Sciences, 2020, 113:100606. |