[1] POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines:The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6):1170-1176. [2] FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1):27-58. [3] HANEY J W, BEAULIEU W D. Waverider inlet integration issues:AIAA-1994-0383[R]. Reston:AIAA, 1994. [4] DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152(9):639-656. [5] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody:AIAA-2009-7421[R]. Reston:AIAA, 2009. [6] HE X Z, ZHOU Z, QIN S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6):1582-1590. [7] EGGERS A J, ASHLEY H, SPRINGER G S. Hypersonic waverider configurations from the 1950's to the 1990's[C]//Proceedings of the 1 st International Hypersonic Waverider Symposium, 1990. [8] LUNAN D. Waverider, a revised chronology:AIAA-2015-3529[R]. Reston:AIAA, 2015. [9] BILLIG F S, KOTHARI A P. Streamline tracing:technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471. [10] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(9):521-528. [11] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Archive of Applied Mechanics,1968, 37(1):56-72. [12] RASMUSSEN N L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545. [13] TAKASHIMA N, LEWIS M J. Wedge-cone waverider configuration for engine-airframe integration[J]. Journal of Aircraft, 1995, 32(5):1142-1144. [14] CUI K, ZHAO D X, YANG G W. Waverider configurations derived from general conical flowfields[J]. Acta Mechanica Sinica, 2007, 23(3):247-255. [15] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//Proceeding of the 1 st International Hypersonic Waverider Symposium, 1990. [16] SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8. [17] JONES K D, SOBIECZKY H, SEEBASS A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6):957-963. [18] CHAUFFOUR M, LEWIS M J. Corrected waverider design for inlet applications:AIAA-2004-3405[R].Reston:AIAA, 2004. [19] CLEGG J, RODI P E, MEADE A. Validation of a crossflow velocity model between waverider flowfield planes:AIAA-2019-2813[R]. Reston:AIAA, 2019. [20] QIAO W Y, YU A Y, WANG Y H. An inverse design method for non-uniform flow inlet with a given shock wave[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(2):287-304. [21] ZHENG X G, LI Y Q, ZHU C X, et al. Multiple osculating cones' waverider design method for ruled shock surface[J]. AIAA Journal, 2020, 58(2):854-866. [22] CHEN L L, DENG X L, GUO Z, et al. A Novel approach for design and analysis of volume-improved osculating-cone waveriders[J]. Acta Asctonautica, 2019, 161(2):430-445. [23] LIU J, LIU Z, WEN X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162(5):160-167. [24] LIU Z, LIU J, DING F. Influence of surface pressure distribution of basic flowfield on osculating axisymmetric waverider[J]. AIAA Journal, 2019, 57(10):4560-4568. [25] O'BRIEN T F, LEWIS M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. [26] WANG J F, LIU C Z, PENG B. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151(6):504-510. [27] YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E:Technological Sciences, 2009, 52(7):2017-2028. [28] ZHAO Z T, HUANG W, LI S B, et al. Variable mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147(4):163-174. [29] HUANG G P, ZUO F Y, Qiao W Y. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration[J]. Aerospace Science and Technology, 2018, 74(1):160-172. [30] ZUCROW M J, HOFFMAN J D. Gas dynamics, Vol.2[M]. New York:John Wiley & Sons, 1976:191-192. [31] RANSOM V H, HOFFMAN J D, THOMSON H D. A second-order bicharacteristics method for three-dimensional, steady, supersonic flow[J]. AIAA Journal, 1972, 10(12):1573-1581. [32] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J].航空学报, 2018, 39(10):122078. QIAO W Y, YU A Y, YANG D W, et al. Integrated design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078(in Chinese). [33] 张文浩,柳军,丁峰.内转式进气道/冯·卡门乘波体一体化设计方法[J].航空学报, 2020, 41(3):123502. ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet and Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123502(in Chinese). [34] 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015, 36(1):289-301. LI Y Z, ZHANG K Y. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301(in Chinese). |