航空学报 > 2018, Vol. 39 Issue (6): 321924-321924   doi: 10.7527/S1000-6893.2018.21924

基于BSP-ANN的四旋翼无人机轨迹跟踪方法

陈志明, 牛康, 李磊, 吴云华, 华冰   

  1. 南京航空航天大学 微小卫星研究中心, 南京 210016
  • 收稿日期:2017-12-07 修回日期:2018-03-14 出版日期:2018-06-15 发布日期:2018-03-14
  • 通讯作者: 陈志明,E-mail:chenzhiming@nuaa.edu.cn E-mail:chenzhiming@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(61673212);航空科学基金(20150852013);江苏省自然科学基金(BK20161490);上海市优秀学科带头人计划(14XD1423300)

Trajectory tracking method for quadrotor UAV based on BSP-ANN

CHEN Zhiming, NIU Kang, LI Lei, WU Yunhua, HUA Bing   

  1. Micro Satellite Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2017-12-07 Revised:2018-03-14 Online:2018-06-15 Published:2018-03-14
  • Supported by:
    National Natural Science Foundation of China (61673212); Aeronautical Science Foundation of China (20150852013); Natural Science Foundation of Jiangsu Province (BK20161490); Program of Shanghai Subject Chief Scientist of China(14XD1423300)

摘要: 为了降低无人机轨迹跟踪误差,提高系统抗干扰能力,对反步(Backstepping)法进行改进提出一种基于反步神经网络(BSP-ANN)的无人机轨迹跟踪方法。首先,建立了四旋翼无人机运动学模型;然后,结合Backstepping方法在无人机的姿态控制、轨迹跟踪控制系统中引入Sigma-Pi神经网络,同时设计Sigma-Pi神经网络控制率,并证明该控制率满足Lyapunov意义下的系统稳定;最后,分别给出了相应的仿真实验。仿真结果表明:该算法可以有效降低跟踪误差,缩短无人机跟踪时间,同时可以提高系统的抗干扰能力。

关键词: 无人机, 轨迹跟踪, Sigma-Pi, 反步神经网络, 反步

Abstract: To reduce the trajectory tracking error of the UAV and improve the anti-jamming ability of the system, a new trajectory tracking algorithm of the UAV is proposed based on BSP-ANN. A dynamic model for the Quadrotor UAV is given. Based on the Backstepping method, the Sigma-Pi ANN is introduced into the position control system and attitude control system of the Quadrotor UAV. The Sigma-Pi ANN control law is designed, and proving the system's stability in the sense of Lyapunov function. The corresponding simulations are performed using MATLAB. Simulation results show that with the BSP-ANN method, the trajectory tracking performance of the UAV can be improved by reducing the trajectory tracking error, decreasing the tracking time, and improving the anti-interference ability of the system.

Key words: UAV, trajectory tracking, Sigma-Pi, BSP-ANN, backstepping

中图分类号: