[1] SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80:18-32.[2] ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.[3] SELLMAIER F, BOGE T, SPURMANN J, et al. On-orbit servicing missions:Challenges and solutions for spacecraft operations[C]//SpaceOps 2010 Conference. Reston, VA:AIAA, 2010.[4] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese).[5] 翟光, 仇越, 梁斌, 等. 在轨捕获技术发展综述[J]. 机器人, 2008, 30(5):467-480. ZHAI G, QIU Y, LIANG B, et al. Development of on-orbit capture technology[J]. Robot, 2008, 30(5):467-480(in Chinese).[6] XU W F, LIANG B, XU Y. Survey of modeling, planning, and ground verification of space robotic systems[J]. Acta Astronautica, 2011, 68(11):1629-1649.[7] MARSHALL H K, BRADLEY B, ROBERT B, et al. Engineering issues for all major modes of in situ space debris capture[C]//AIAA SPACE 2010 Conference & Exposition. Reston, VA:AIAA, 2010.[8] LIOU J C. An active debris removal parametric study for LEO environment remediation[J]. Advances in Space Research, 2011, 47(11):1865-1876.[9] 曹喜滨, 李峰, 张锦绣. 空间碎片天基主动清除技术发展现状及趋势[J]. 国防科技大学学报, 2015, 37(4):117-120. CAO X B, LI F, ZHANG J X. Development status and tendency of active debris removal[J]. Journal of National University of Defense Technology, 2015, 37(4):117-120(in Chinese).[10] LIN H Y, ZHAO C Y. Evolution of the rotational motion of space debris acted upon by eddy current torque[J]. Astrophysics and Space Science, 2015, 357(2):1-8.[11] GOMEZ N O, WALKER S J I. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects:Envisat case study[J]. Advances in Space Research, 2015, 56(3):494-508.[12] BENNETT T, STEVENSON D, HOGAN E, et al. Prospects and challenges of touchless electrostatic detumbling of small bodies[J]. Advances in Space Research, 2015, 56(3):557-568.[13] SUGAI F. Detumbling a malfunctioning satellite by using an eddy current brake[D]. Sendai:Tohoku University, 2014.[14] PRALY N, HILLION M, BONNAL C, et al. Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages[J]. Acta Astronautica, 2012, 76:145-153.[15] 徐福祥. 用地球磁场和重力场成功挽救风云一号(B)卫星的控制技术[J]. 宇航学报, 2001, 22(2):1-11. XU F X. Technique of successful rescue of FY-1B meteorological satellite by using the geomagnetic field and the gravitational field[J]. Journal of Astronautics, 2001, 22(2):1-11(in Chinese).[16] BONNAL C. Active debris removal:Current status of activities in CNES[C]//Proceedings of the 5th Space Debris Workshop. Tokyo:JAXA, 2013:47-59.[17] NISHIDA S I, KAWAMOTO S. Strategy for capturing of a tumbling space debris[J]. Acta Astronautica, 2011, 68(1):113-120.[18] NAKAJIMA Y, MITANI S, TANI H, et al. Detumbling space debris via thruster plume impingement[C]//AIAA/AAS Astrodynamics Specialist Conference, AIAA SPACE Forum. Reston, VA:AIAA, 2016.[19] PETERS T V, OLMOS E D. COBRA contactless detumbling[J]. CEAS Space Journal, 2016, 8(3):143-165.[20] YOUNGQUIST R C, NURGE M A, STARR SO, et al. A slowly rotating hollow sphere in a magnetic field:First steps to de-spin a space object[J]. American Journal of Physics, 2016, 84(3):181-191.[21] 赵一鸣. 基于库仑力的非接触式目标消旋研究[D]. 哈尔滨:哈尔滨工业大学, 2016. ZHAO Y M. Research on non-contact attitude control based on the coulomb force[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).[22] 徐文福, 刘厚德, 李成, 等. 双臂空间机器人捕获运动目标的自主路径规划[J]. 机器人, 2012, 34(6):704-714. XU W F, LIU H D, LI C, et al. Autonomous path planning of dual-arm space robot for capturing moving target[J]. Robot, 2012, 34(6):704-714(in Chinese).[23] HUANG P F, WANG D K, MENG Z J, et al. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):150-156.[24] 卢伟, 耿云海, 陈雪芹, 等. 在轨服务航天器对目标的相对位置和姿态耦合控制[J]. 航空学报, 2011, 32(5):857-865. LU W, GENG Y H, CHEN X Q, et al. Coupled control of relative position and attitude for on-orbit servicing spacecraft with respect to target[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):857-865(in Chinese).[25] AN X Y, REN Z, LU W. Terminal sliding mode control of attitude synchronization for autonomous docking to a tumbling satellite[C]//Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). Piscataway, NJ:IEEE Press, 2013:2760-2763.[26] BYLARD A, MACPHERSON R, HOCKMAN B, et al. Robust capture and deorbit of rocket body debris using controllable dry adhesion[C]//2017 IEEE Aerospace Conference, Piscataway, NJ:IEEE Press, 2017.[27] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7):1520-1530. WEI W S, JING W X, GAO C S. Research automatic stability technology of spacecraft assembly with captured non-cooperative targets on orbit[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1520-1530(in Chinese).[28] MATUNAGA S, KANZAWA T, OHKAMI Y. Rotational motion-damper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2):199-205.[29] KAWAMOTO S, MATSUMOTO K, WAKABAYASHI S. Ground experiment of mechanical impulse method for uncontrollable satellite capturing[C]//Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS). Montreal:Canadian Space Agency, 2001.[30] WANG D K, HUANG P F, MENG Z J. Coordinated stabilization of tumbling targets using tethered space manipulators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2420-2432.[31] HUANG P F, ZHANG F, MENG Z J, et al. Adaptive control for space debris removal with uncertain kinematics, dynamics and states[J]. Acta Astronautica, 2016, 128:416-430.[32] HUANG P F, WANG M, MENG Z J, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9):1985-2008.[33] ZHANG F, SHARF I, MISRA A, et al. On-line estimation of inertia parameters of space debris for its tether-assisted removal[J]. Acta Astronautica, 2015, 107:150-162.[34] HOVELL K, ULRICH S. Attitude stabilization of an uncooperative spacecraft in an orbital environment using visco-elastic tethers[C]//AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum. Reston, VA:AIAA, 2016.[35] KUMAR R, SEDWICK R J. Despinning orbital debris before docking using laser ablation[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1129-1134.[36] BENNETT T, SCHAUB H. Touchless electrostatic three-dimensional detumbling of large axi-symmetric debris[J]. The Journal of the Astronautical Sciences, 2015, 62(3):233-253.[37] SUGAI F, ABIKO S, TSUJITA T, et al. Detumbling an uncontrolled satellite with contactless force by using an eddy current brake[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2013:783-788.[38] SUGAI F, ABIKO S, TSUJITA T, et al. Development of an eddy current brake system for detumbling malfunctioning satellites[C]//2012 IEEE/SICE International Symposium on System Integration (SⅡ). Piscataway, NJ:IEEE Press, 2012:325-330.[39] GOMEZ N O, WALKER S J I. Guidance, navigation, and control for the eddy brake method[J]. Journal of Guidance, Control, and Dynamics, 2017,40(1):52-68.[40] GOMEZ N O, WALKER S J I. Eddy currents applied to de-tumbling of space debris:Analysis and validation of approximate proposed methods[J]. Acta Astronautica, 2015, 114:34-53.[41] DARPA TACTICAL TECHNOLOGY OFFIC. Broad agency announcement:Phoenix technologies project page[EB/OL]. (2011)[2017-02-17]. http://www.darpa.mil/tto/progra-ms/Phoenix.html.[42] BISCHOF B, KERSTEIN L, STARKE J, et al. ROGER-Robotic geostationary orbit restorer[J]. Science and Technology Series, 2004, 109:183-193.[43] KAISER C, SJÖBERG F, DELCURA J M, et al. SMART-OLEV-An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J]. Acta Astronautica, 2008, 63(1):400-410.[44] 王志超. 非合作航天器视觉位姿测量方法的研究[D].哈尔滨:哈尔滨工业大学, 2013. WANG Z C. Research on visual measurement method of non-cooperative spacecraft[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).[45] 蔡晗, 张景瑞, 翟光, 等. GEO非合作目标超近距相对位姿视觉测量[J]. 宇航学报, 2015, 36(6):715-722. CAI H, ZHANG J R, ZHAI G, et al. Relative pose determination for GEO non-cooperative spacecraft under the ultra-close distance[J]. Journal of Astronautics, 2015, 36(6):715-722(in Chinese).[46] KELSEY J M, BYRNE J, COSGROVE M, et al. Vision-based relative pose estimation for autonomous rendezvous and docking[C]//2006 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2006.[47] 任宇琪. 面向空间非合作目标捕获的位姿测量方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015. REN Y Q. Research on pose estimation methods of non-cooperative space objects towards space grapple applications[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).[48] 郭瑞科, 王立, 朱飞虎, 等. 空间非合作目标的多视角点云配准算法研究[J]. 中国空间科学技术, 2016, 36(5):32-39. GUO R K, WANG L, ZHU F H, et al. Research on registration algorithm of multiple-view point cloud for non-cooperative spacecraft[J]. Chinese Space Science and Technology, 2016, 36(5):32-39(in Chinese).[49] LIM T W, RAMOS P F, O'DOWD M C. Edge detection using point cloud data for noncooperative pose estimation[J]. Journal of Spacecraft and Rockets, 2017,54(2):500-505.[50] 孙俊, 张世杰, 马也, 等. 空间非合作目标惯性参数的Adaline网络辨识方法[J]. 航空学报, 2016, 37(9):2799-2808. SUN J, ZHANG S J, MA Y, et al. Adaline network-based identification method of inertial parameters for space uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2799-2808(in Chinese).[51] XU W F, HU Z H, ZHANG Y, et al. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics[J]. Acta Astronautica, 2017, 132:131-142.[52] CHU Z Y, MA Y, HOU Y Y, et al. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator[J]. Acta Astronautica, 2017, 131:69-82.[53] GÓMEZ N O, WALKER S J, JANKOVIC M, et al. Control analysis for a contactless de-tumbling method based on eddy currents:Problem definition and approximate proposed solutions[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2016.[54] CAUBET A, BIGGS J D. Design of an attitude stabilization electromagnetic module for detumbling uncooperative targets[C]//2014 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2014:1-13.[55] SILANI E, LOVERA M. Magnetic spacecraft attitude control:a survey and some new results[J]. Control Engineering Practice, 2005, 13(3):357-371.[56] CLERC S, RENAULT H, LOSA D. Control of a magnetic capture device for autonomous in-orbit rendezvous[C]//18th IFAC World Congress. Milano:IFAC, 2011:2084-2089.[57] YUDINTSEV V, ASLANOV V. Detumbling space debris using modified yo-yo mechanism[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):714-721.[58] YOSHIKAWA S, YAMADA K. Impulsive control for angular momentum management of tumbling spacecraft[J]. Acta Astronautica, 2007, 60(10-11):810-819. |