[1] SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80:18-32. [2] KESSLER D J, COUR-PALAIS B G. Collision frequency of artificial satellites:The creation of a debris belt[J]. Journal of Geophysical Research Space Physics, 1978, 83(6):2637. [3] LIOU J C, JOHNSON N L, HILL N M. Controlling the growth of future LEO debris populations with active debris removal[J]. Acta Astronautica, 2010, 66(5-6):648-653. [4] 邱爽. 空间非合作目标状态估计与消旋方案设计[D]. 哈尔滨:哈尔滨工业大学, 2018:1-2. QIU S. State estimation and de-tumbling of space non-cooperative targets[D]. Harbin:Harbin Institute of Technology, 2018:1-2(in Chinese). [5] 王哲. 面向大型旋转空间碎片捕获的接触式消旋技术研究[D]. 哈尔滨:哈尔滨工业大学, 2018:4-5. WANG Z. Contact detumbling oftumling large space debris capture[D]. Harbin:Harbin Institute of Technology, 2018:4-5(in Chinese). [6] 马广富, 郭延宁, 邱爽, 等.空间非合作目标消旋技术研究现状总结与展望[J]. 飞控与探测, 2018, 1(1):26-33. MA G F, GUO Y N, QIU S, et al. Summary and prospect of de-tumbling methods of space noncooperative targets[J]. Flight Control & Detection, 2018, 1(1):26-33(in Chinese). [7] 路勇, 刘晓光, 周宇, 等.空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021302(in Chinese). [8] NISHIDA S I, KAWAMOTO S. Strategy for capturing of a tumbling space debris[J]. Acta Astronautica, 2011, 68(1-2):113-120. [9] LIU Y Q, YU Z W, LIU X F, et al. Active detumbling technology for high dynamic non-cooperative space targets[J]. Multibody System Dynamics, 2019, 47(1):21-41. [10] LIU Y Q, YU Z W, LIU X F, et al. Active detumbling technology for noncooperative space target with energy dissipation[J]. Advances in Space Research, 2019, 63(5):1813-1823. [11] 段文杰, 朱志斌, 徐拴锋. 失效卫星在轨消旋接触控制研究[C]//第三十六届中国控制会议论文集. 2017:239-244. DUAN W J, ZHU Z B, XU S F. Research on dynamics and control of on-orbit disabled satellites for positive tumbling breaking[C]//Proceedings of the 36th Chinese Control Conference. 2017:239-244(in Chinese). [12] DUAN W J, ZHANG H B, WANG D Y. Experiment-based contact dynamic modeling for detumbling a disable satellite[C]//4th International Academy of Astronautics Conference on Dynamics and Control of Space Systems. 2018:2053-2060. [13] 吴昊, 孙晟昕, 魏承, 等. 基于机器人柔性毛刷的空间翻滚目标消旋[J]. 航空学报, 2019, 40(5):422587. WU H, SUN S X, WEI C, et al. Tumbling target despun based on robotic flexible brush[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422587(in Chinese). [14] WANG X L, ZHOU Z C, CHEN Y J, et al. Optimal contact control for space debris detumbling and nutation damping[J]. Advances in Space Research, 2020, 66(4):951-962. [15] 孙晟昕, 吴昊, 魏承, 等. 基于柔性毛刷的自旋卫星的消旋动力学分析[J]. 中国科学:物理学力学天文学, 2019, 49(2):139-146. SUN S X, WU H, WEI C, et al. Dynamic analysis of rotating satellite de-spun using flexible brush[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(2):139-146(in Chinese). [16] 段文杰, 张海博, 徐拴锋. 一种基于力矩分析的失效卫星接触消旋方法[C]//第三十九届中国控制会议论文集. 2020:834-839. DUAN W J, ZHANG H B, XU S F. A contact detumbling method for disabled satellites based on torque analyzing[C]//Proceedings of the 39th Chinese Control Conference. 2020:834-839(in Chinese). [17] 吴宏鑫, 胡军. 特征建模理论、方法和应用[M]. 北京:国防工业出版社, 2019:7-8. WU H X, HU J. Theory, methods and applications of characteristic modeling[M]. Beijing:National Defense Industry Press, 2019:7-8(in Chinese). [18] SUN D Q. Stability analysis of golden-section adaptive control systems based on the characteristic model[J]. Science China Information Sciences, 2017, 60(9):1-18. [19] 杨扬, 吴宏鑫. 基于特征模型的全系数自适应控制系统稳定性研究[J]. 航天控制, 2007, 25(5):3-6. YANG Y, WU H X. Study on the stability of characteristic model based all-coefficient adaptive control system[J]. Aerospace Control, 2007, 25(5):3-6(in Chinese). [20] 孟斌. 基于特征模型的高超声速飞行器自适应控制研究进展[J]. 控制理论与应用, 2014, 31(12):1640-1649. MENG B. Review of the characteristic model-based hypersonic flight vehicles adaptive control[J]. Control Theory & Applications, 2014, 31(12):1640-1649(in Chinese). [21] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998:155-160. ZHANG R W. Control and orbit and attitude dynamics of satellite[M]. Beijing:Beihang University Press, 1998:155-160(in Chinese). [22] MENG B, WU H X. On characteristic modeling of a class of flight vehicles' attitude dynamics[J]. Science China Technological Sciences, 2010, 53(8):2074-2080. [23] 吴宏鑫, 胡军, 解永春. 基于特征建模的智能自适应控制[M]. 北京:中国科学技术出版社, 2008:79-80. WU H X, HU J, XIE Y C. Intelligent adaptive control based on characteristic model[M]. Beijing:China Science and Technology Press, 2008:79-80(in Chinese). [24] 解永春, 吴宏鑫. 黄金分割在自适应鲁棒控制器设计中的应用[J]. 自动化学报, 1992, 18(2):177-185. XIE Y C, WU H X. The application of the golden section in adaptive robust controller design[J]. Acta Automatica Sinica, 1992, 18(2):177-185(in Chinese). [25] 胡军. 基于预测的全系数自校正采用一阶特征模型的论证[R]. 北京:北京控制工程研究所, 2014. HU J. Demonstration of first-order characteristic model based on predictive full coefficient self-correction[R]. Beijing:Beijing Institute of Control Engineering, 2014(in Chinese). [26] 庞中华, 崔红. 系统辨识与自适应控制MATLAB仿真[M]. 北京:北京航空航天大学出版社, 2009:196-201. PANG Z H, CUI H. System identification and adaptive control MATLAB simulation[M]. Beihang:Beijing University Press, 2009:196-201(in Chinese). |