[1] STEGER J L, DOUGHERTY F C, BENEK J A. A chimera grid scheme[C]//Mini Symposium on Advances in Grid Generation, 1982.
[2] CHAN W M, PANDYAY S A, ROGERS S E. Effcient creation of overset grid hole boundaries and effects of their locations on aerodynamic loads[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2013.
[3] KIM N, CHAN W M. Automation of hole-cutting for overset grids using the x-rays approach:AIAA-2011-3052[R]. Reston:AIAA, 2011.
[4] 王文, 阎超. 新型重叠网格洞面优化方法及其应用[J]. 航空学报, 2016, 37(3):826-835. WANG W, YAN C. Novel overlapping optimization algorithm of overlapping grid and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):826-835(in Chinese).
[5] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Reseach progress on mesh deformation in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):303-319(in Chinese).
[6] FOSTER N F. Accuracy of high-order cfd and overset interpolation in finite volumee/difference codes[C]//22nd AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2015.
[7] UCHIDA Y, KANDA H. Spacing control of 3-D transfinite interpolation grid generation:AIAA-2005-5243[R]. Reston:AIAA, 2005.
[8] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[9] BLOM F J. Considerations on the spring analogy[J]. International Journal of Numerical Methods in Fluid, 2000, 32(6):647-668.
[10] CANTARITI D L, GRIBBEN W M, BADCOCK K J, et al. A grid deformation technique for unsteady flow computations[J]. International Journal of Numerical Methods in Fluids, 2000, 32(3):285-311.
[11] 刘枫. 动网格技术研究及其在高超声速流动中的应用[D]. 长沙:国防科学技术大学, 2009:54-55. LIU F. Investigations of dynamic grid generation and its applications for supersonic flow[D]. Changsha:National University of Defense Technology, 2009:54-55(in Chinese).
[12] 郭正, 刘君, 翟章华. 用非结构动网格方法模拟有相对运动的多体绕流[J]. 空气动力学学报, 2001, 19(3):310-316. GUO Z, LIU J, ZHAI Z H. Simulation of flows past multi-body in relative motion with dynamic unstructured method[J]. Acta Aerodynamic Sinica, 2001, 19(3):310-316(in Chinese).
[13] TEZDUYAR T E. Stability finite element formulations for incompressible flow computations[J]. Advances in Applied Mechanics, 1992, 28(1):1-44.
[14] LIU X, QIN N, XIA H. Fast dynamic grid deformation based on delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[15] BORE A, SCHOOT M S, FACULTY S H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007, 85(11):784-795.
[16] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2010, 229(8):2810-2820.
[17] WANG G, HARIS H M, YE Z Y. An improved point selection method for hybrid unstructured mesh deformation using radial basis functions:AIAA-2013-3076[R]. Reston:AIAA, 2013.
[18] 魏其, 李春娜, 谷良贤, 等. 一种基于径向函数和峰值选择法的高效网格变形技术[J]. 航空学报, 2016, 37(7):1401-1414. WEI Q, LI C N, GU L X, et al. An efficient mesh deformation method based on radial basis functions and peak-selection method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):1401-1414(in Chinese).
[19] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. An improvement on Delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese).
[20] JOHNSON A A, TEZDUYAR T E. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 119(1-2):73-94.
[21] USHIJIMA S. Three-dimensional arbitrary Lagrangian-Eulerian numerical prediction method for non-linear free surface oscillation[J]. International Journal for Numerical Methods in Fluids, 1998, 26(5):605-623.
[22] GRVBER B, CARTENS V. Computation of the unsteady transonic flow in harmonically oscillating turbine cascades taking into account viscous effects[J]. Journal of Turbomachinery, 1998, 120(1):104-111.
[23] THOMAS P D, MIDDLECOFF J F. Direct control of the grid point distribution in meshes generated by elliptic equations[J]. AIAA Journal, 1979, 18(6):652-656.
[24] SORENSON R L, STEGER J L. Numerical generation of 2D grids by the use of poisson equations with grids control:N81-14722[R]. 1981.
[25] SORENSON R L. A computer program to generate 2D grids about airfoil and other shapes by the use of poisson's equation:N80-26266[R]. 1980.
[26] HILGENSTOCK A. A fast method for the elliptic generation of three-dimensional grids with full boundary control[C]//Numerical Grid Generation in Computational Fluid Mechanics, 1988:137-146.
[27] SONAR T. Grid generation using elliptic partial differential equations:DFVLR-FB89-15[R]. 1989.
[28] GAITONDE A L, FIDDES S P. A moving mesh system for the calculation of unsteady flows:AIAA-1993-0641[R]. Reston:AIAA, 1993.
[29] LI J, HUANG S. Unsteady viscous flow simulations by a fully implicit method with deforming grid:AIAA-2005-1221[R]. Reston:AIAA, 2005.
[30] UNMEEL B M. Synthesis of contributed simulations for OREX test cases:NASA/TM-1998-112238[R]. Washington, D.C.:NASA, 1998.
[31] YOSHINAGA T, TATE A, WATANABE M. Dynamic test of the orbital reentry vehicle (OREX) in a transonic wind tunnel with comparison to flight data:AIAA-1995-1901-CP[R]. Reston:AIAA, 1995.
[32] THOMPSON J F. Numerical grid generation-foundations and applications[M]. North Holland:Amsterdam, 1985.
[33] SLATER J W. RAE2822 transonic airfoil:Study #1[EB/OL]. (2015-01-22)[2016-07-17]. http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html. |