[1] Xu F X.Satellite engineering[M]. Beijing: China Aerospace Press, 2002: 150-151 (in Chinese). 徐福祥. 卫星工程[M]. 北京: 中国宇航出版社, 2002: 150-151.
[2] Jia G H, Ouyang Z J, Jiang H. Analysis and instances of ballistic limit equations' predictive indicators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2364-2371 (in Chinese). 贾光辉, 欧阳智江, 蒋辉. 撞击极限方程预测指标剖析与实例[J]. 航空学报, 2013, 34(10): 2364-2371.
[3] Roth B, Kroo I. Enhanced collaborative optimization: application to an analytic test problem and aircraft design[C]//Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008: 1-14.
[4] Wang J, He L S. Boost-glide missile conceptual study based on enhanced collaborative optimization[J]. Journal of Astronautic, 2009, 30(6): 2436-2441 (in Chinese). 王健, 何麟书. 基于增强协同优化的助推-滑翔导弹概念研究[J]. 宇航学报, 2009, 30(6): 2436-2441.
[5] Christiansen E L. Design and performance equations for advanced meteoroid and debris shields[J]. International Journal of Impact Engineering, 1993, 14(1-4): 145-156.
[6] Jia G H, Ouyang Z J. Limit equations for hypervelocity impacts on honeycomb[J]. Chinese Space Science and Technology, 2013(5): 15-21 (in Chinese). 贾光辉, 欧阳智江. 蜂窝夹层板撞击极限方程分析[J]. 中国空间科学技术, 2013(5): 15-21.
[7] Schaefer F, Schneider E, Lambert M. Review of ballistic limit equations for CFRP structure walls of satellites[C]//Proceedings of the 5th International Symposium on Environmental Testing for Space Programs. Noordwijk: ESA Publications Division, 2004: 431-443.
[8] Ryan S, Christiansen E L. Micrometeoroid and orbital debris (MMOD) shield ballistic limit analysis program, NASA/TM-2009-214789[R]. Wahsington, D.C.: NASA,2010.
[9] Jia G H, Ouyang Z J, Jiang H. Promotion of prediction ability of impact limit equation on honeycomb sandwich panel[J]. Explosion and Shock Waves, 2014, 34(4): 397-403 (in Chinese). 贾光辉, 欧阳智江, 蒋辉. 蜂窝夹层板撞击极限方程预测能力的提升[J]. 爆炸与冲击, 2014, 34(4): 397-403.
[10] Lambert M, Schaefer F K, Geyer T. Impact damage on sandwich panels and multi-layer insulation[J]. International Journal of Impact Engineering, 2001, 26(1-10): 369-380.
[11] Turner R J, Taylor E A, Mcdonnell J A M, et al. Cost effective honeycomb and multi-layer insulation debris shields for unmanned spacecraft[J]. International Journal of Impact Engineering, 2001, 26(1-10): 785-796.
[12] Hu Z D. Numerical investigations of space debris hypervelocity impact on spacecraft honeycomb panel structure[D]. Beijing: Beihang University, 2008 (in Chinese). 胡震东. 碎片对航天器蜂窝夹层板结构超高速碰撞研究[D]. 北京: 北京航空航天大学, 2008.
[13] Jia G H, Li X, Ouyang Z J. Outlier identification from impact experimental data of honeycomb sandwich panel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 548-554 (in Chinese). 贾光辉, 李轩, 欧阳智江. 蜂窝夹层板撞击实验数据中的野值判别[J]. 航空学报, 2015, 36(2): 548-554.
[14] Schonberg W P, Evans H J, Williamsen J E, et al. Uncertainty considerations for ballistic limit equations[C]//Proceedings of the 4th European Conference on Space Debris. Paris: ESA, 2005: 477-482.
[15] Ryan S, Schaefer F, Destefanis R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures[J]. Advances in Space Research, 2008, 41(7): 1152-1166.
[16] Taylor E A, Herbert M K, Vaughan B, et al. Hypervelocity impact on carbon fibre reinforced plastic/aluminium honeycomb: comparison with Whipple bumper shields[J]. International Journal of Impact, 1999, 23(1): 883-893. |