[1] Le J L, Gao T S, Zeng X J. Reentry physics[M]. Beijing: National Defense Industry Press, 2005: 1-6 (in Chinese). 乐嘉陵, 高铁锁, 曾学军. 再入物理[M]. 北京: 国防工业出版社, 2005: 1-6.[2] Hirschel E H. Viscous effects[J]. Space Course, 1991, 1(1): 12-35.[3] Surzhikov S T. Spectral emissivity of shock waves in Martian and Titan atmospheres, AIAA-2010-4527[R]. Reston: AIAA, 2010.[4] Walker S, Tang M, Morris S, et al. Falcon HTV-3X-a reusable hypersonic test bed, AIAA-2008-2544[R]. Reston: AIAA, 2008.[5] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program, AIAA-2008-2540[R]. Reston: AIAA, 2008.[6] Park C. Nonequilibrium hypersonic aerothermodynamics[M]. New York: John Wiley and Sons, 1990: 178-184, 255-281.[7] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K, NASA TP-1232[R]. Washington, D.C.: NASA, 1990.[8] Park C. Stagnation-point radiation for Apollo[J]. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 349-357.[9] Dong S K, Tan H P, He Z H, et al. Numerical simulation of visible and infrared radiation properties of hypersonic reentry bodies[J]. Journal of Infrared and Millimeter Waves, 2002, 21(3): 180-184 (in Chinese). 董士奎, 谈和平, 贺志宏, 等. 高超声速再入体可见、红外辐射特性数值模拟[J]. 红外与毫米波学报, 2002, 21(3): 180-184.[10] Ouyang S W, Xie Z Q. High temperature nonequilibrium air flow [M]. Beijing: National Defense Industry Press, 2001: 200-213 (in Chinese). 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京:国防工业出版社, 2001: 200-213.[11] Blottner F G. Prediction of electron density in the boundary-layer on entry vehicles with ablation, NASA SP-252[R]. Washington, D.C.: NASA, 1970.[12] Mather D E, Pasqual J M, Sillence J P. Radio frequency(RF) blackout during hypersonic reentry, AIAA-2005-3443[R]. Reston: AIAA, 2005.[13] Olynick D, Chen Y K, Tauber M. Wake flow calculation with radiation and ablation for the stardust sample return capsule, AIAA-1997-2477[R]. Reston: AIAA, 1997.[14] Gao T S, Dong W Z, Zhang Q Y. The computation and analysis for the hypersonic flow over reentry vehicles with ablation [J]. Acta Aaerodynamica Sinica, 2006, 24(1): 41-46 (in Chinese). 高铁锁, 董维中, 张巧芸. 高超声速再入体烧蚀流场计算分析[J]. 空气动力学学报, 2006, 24(1): 41-46.[15] Gimelshein S F, Levin D A. Ultraviolet radiation modeling from high-altitude plumes and comparison with mir data[J]. AIAA Journal, 2000, 38(12): 2344-2352.[16] Feng S J, Nie W S, Song F H, et al. Evaluation research of infrared radiation characteristics of solid rocket motor exhaust plume[J]. Journal of Solid Rocket Technology, 2009, 32(2): 183-187 (in Chinese). 丰松江, 聂万胜, 宋丰华, 等. 固体火箭发动机尾喷焰红外辐射特性预估研究[J].固体火箭技术, 2009, 32(2): 183-187.[17] Kinefuchi K, Funaki I, Ogawa H, et al. Investigation of microwave attenuation by solid rocket exhausts, AIAA-2009-1386[R]. Reston: AIAA, 2009.[18] An D M, Liu Q Y. Effects of flight condition on microwave attenuation characteristics of rocket plume[J]. Journal of Solid Rocket Technology, 2000, 23(3): 11-15(in Chinese). 安东梅, 刘青云. 飞行环境对火箭喷焰微波衰减特性的影响[J]. 固体火箭技术, 2000, 23(3): 11-15.[19] Lee R H C, Chang I S, Stewart G E. Studies of plasma properties in rocket plumes, SD-TR-82-44[R]. Los Angeles: Calif Aerospace Corporation, 1982.[20] Smoot L D, Underwood D L, Schroeder R G. Prediction of microwave attenuation characteristics of rocket exhausts, AIAA-1965-0181[R]. Reston: AIAA, 1965.[21] Gupta R N, Lee K P, Moss J N, et al. Viscous shock-layer solutions with coupled radiation and ablation for earth entry [J]. Journal of Spacecraft and Rockets, 1992, 29(2): 173-181.[22] Molvik G A. A set of strongly coupled upwind algorithms for computing flows in chemical nonequilibrium, AIAA-1989-0199[R]. Reston: AIAA, 1989.[23] Bhutta B A, Lewis C H. A new technique for low-to-high altitude predictions of ablative hypersonic flowfields, AIAA-1991-0392[R]. Reston: AIAA, 1991.[24] Boyd I D. Computation of hypersonic flows using the direct simulation Monte Carlo method, AIAA-2013-2557[R]. Reston: AIAA, 2013.[25] Olynick D R, Taylor J C, Hassan H A. Comparisons between DSMC and the Naiver-Stokes equations for reentry flows, AIAA-1993-2810[R]. Reston: AIAA, 1993.[26] Hong W H, Sun H S, Liu L Y. An analysis of chemical nonequilibrium of ablation for a reentry body[J]. Missiles and Space Vehicles, 1994, 208(2): 36-44 (in Chinese). 洪文虎, 孙洪森, 刘连元. 有升力再入飞行器烧蚀化学非平衡研究[J]. 导弹与航天运载技术, 1994, 208(2): 36-44.[27] Scott C D. Wall catalytic recombination and boundary conditions in nonequilibrium hypersonic flows-with application[J]. Advances in Hypersonics, 1992, 2(1): 176-250.[28] Park C. Chemical-kinetic parameters of hyperbolic earth entry, AIAA-2000-0210[R]. Reston: AIAA, 2000.[29] Wang J, Pei H L, Wang N Z. Research on ablation for crew return vehicle based on re-entry trajectory and aerodynamic heating environment[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 80-89 (in Chinese). 王俊, 裴海龙, 王乃洲. 基于再入轨迹和气动热环境的返回舱烧蚀研究[J]. 航空学报, 2014, 35(1): 80-89.[30] Mertens J D. Computational model of nitrogen vibrational relaxation by electron collisions[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 204-209.[31] Capitelli M, Colonna G, Giordano D, et al. High-temperature thermodynamic properties of mars atmosphere components, AIAA-2004-2378[R]. Reston: AIAA, 2004.[32] Fertig M, Dohr A, Fruhauf H H. Transport coefficients for high-temperature nonequilibirum air flows[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(2): 148-156.[33] Laricchiuta A, Bruno D, Catalfamo C, et al. Transport properties of high-temperature Mars-atmosphere components, AIAA-2007-4043[R]. Reston: AIAA, 2007.[34] Lee E S, Park C, Chang K S. Shock-tube determination of CN formation rate in a CO-N2 mixture, AIAA-2007-0810[R]. Reston: AIAA, 2007.[35] Gokcen T. N2-CH4-Ar chemical kinetic model for simulations of titan atmospheric entry[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(1): 9-18.[36] Keenan J A, Candler G V. Simulation of ablation in earth atmospheric entry, AIAA-1993-2789[R]. Reston: AIAA, 1993.[37] Candler G V. Computation of thermo-chemical nonequilibrium Martian atmospheric entry flows, AIAA-1990-1695[R]. Reston: AIAA, 1990.[38] Dong W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing: Beihang University, 1996 (in Chinese). 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996.[39] Hash D, Olejniczak J, Wright M. FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification: DPLR, LAURA, and US3D, AIAA-2007-0605[R]. Reston: AIAA, 2007.[40] Mazaheri A, Gnoffo P A, Johnston C O, et al. LAURA users manual: 5.5-65135, NASA/TM-2013-217800[R]. Washington, D.C.: NASA, 2013.[41] Liu J. Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon[D]. Changsha: National University of Defense Technology, 2004 (in Chinese). 柳军. 热化学非平衡流及其辐射现象的试验和数值计算研究[D]. 长沙: 国防科学技术大学, 2004.[42] Li H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese). 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007.[43] Wang J F, Yu Q H, Wu Y Z. Distributed parallel algorithms for hypersonic thermo-chemical non-equilibrium flows[J]. Journal of University of Science and Technology of China, 2008, 38(5): 529-533 (in Chinese). 王江峰, 余奇华, 伍贻兆. 高超声速热化学非平衡绕流分布式并行计算[J]. 中国科学技术大学学报, 2008, 38(5): 529-533.[44] Candler G V, Maccormack R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibrium, AIAA-1988-0511[R]. Reston: AIAA, 1988.[45] Dong W Z, Gao T S, Ding M S. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica, 2007, 25(1): 1-6 (in Chinese). 董维中, 高铁锁, 丁明松. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报, 2007, 25(1): 1-6.[46] Miler J H, Tannehill J C, Lawrence S L, et al. Development of an upwind PNS code for thermo-chemical nonequilibrium flows, AIAA-1995-2009[R]. Reston: AIAA, 1995.[47] Candler G V. Nonequilibrium processes in hypervelocity flows: an analysis of carbon ablation models, AIAA-2012-0724[R]. Reston: AIAA, 2012.[48] Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 287-302 (in Chinese). 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展 [J]. 航空学报, 2014, 35(2): 287-302.[49] Gupta R N, Moss J N, Price J M. Assessment of thermo-chemical nonequilibrium and slip effects for orbital re-entry experiment[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 562-569.[50] Li H Y, Luo W Q, Shi W B. An application of Newton-type iteration method on the control equations of ablation boundary[J]. Acta Aerodynamica Sinica, 2010, 28(4): 456-461 (in Chinese). 李海燕, 罗万清, 石卫波. Newton型迭代法在求解烧蚀边界条件控制方程中的应用[J]. 空气动力学学报, 2010, 28(4): 456-461.[51] Gnoffo P A, Johnston C O. A boundary condition relaxation algorithm for strongly coupled ablating flows including shape change, AIAA-2011-3370[R]. Reston: AIAA, 2011.[52] Parsons N, Zhu T, Levin D A, et al. Development of DSMC chemistry models for Nitrogen collisions using accurate theoretical calculations, AIAA-2014-1213[R]. Reston: AIAA, 2014.[53] Wu Q F, Chen W F. Direct simulation Monte-Carlo method for thermo-chemical nonequilibrium flow of high temperature and rarefied gas[M]. Changsha: National University of Defense Technology Press, 1999: 184-263 (in Chinese). 吴其芬, 陈伟芳. 高温稀薄气体热化学非平衡流动的DSMC方法[M]. 长沙:国防科学技术大学出版社, 1999: 184-263.[54] Bird G A. Molecular gas dynamics and the direct simulation of gas flows [M]. Oxford: Oxford University Press, 1994: 123-147.[55] Wang B G, Li X D, Liu S Y. DSMC algorithm and heat transfer analysis of high temperature and high velocity rarefied gas flow[J]. Journal of Aerospace Power, 2010, 25(6): 1203-1220 (in Chinese). 王保国, 李学东, 刘淑艳. 高温高速稀薄流的DSMC算法与流场传热分析[J]. 航空动力学报, 2010, 25(6): 1203-1220.[56] Haas B L, Boyd I D. Models of direct Monte Carlo simulation of coupled vibration dissociation[J]. Physics of Fluid A, 1993, 5(2): 478-489.[57] Boyd I D, Bose D, Candler G V. Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations physics of fluids[J]. Physics of Fluids, 1997, 9(1): 1162-1170.[58] Bird G A. The Q-K model for gas-phase chemical reaction rates[J]. Physics of Fluid, 2014, 23(106101): 1-13.[59] Collins F G, Knox E C. Determination of wall boundary conditions for high-speed-ratio direct simulation Monte Carlo calculations[J]. Journal of Spacecraft and Rockets, 1994, 31(6): 965-970.[60] Bartel T J, Johannes J E, Furlani T R. Trace chemistry modeling with DSMC in chemically reacting plasmas, AIAA-1998-2753[R]. Reston: AIAA, 1998.[61] Ozawa T, Fedosov D, Levin D A, et al. Use of quasi-classical trajectory methods in the modeling of OH production mechanisms in DSMC, AIAA-2004-0336[R]. Reston: AIAA, 2004.[62] Li Z, Sohn I, Levin D A. DSMC modeling of vibration-translational relaxation of molecular nitrogen in hypersonic reentry flows, AIAA-2011-3131[R]. Reston: AIAA, 2011.[63] Bartel T J, Johannes J E, Furlani T R. Trace chemistry modeling with DSMC in chemically reacting plasmas, AIAA-1998-2753[R]. Reston: AIAA, 1998.[64] Gallis M A, Bond R B, Torczynski J R. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows, AIAA-2010-4499[R]. Reston: AIAA, 2010.[65] Liechty D S. Treatment of electronic energy level transition and ionization following the particle-based chemistry model, AIAA-2010-3379[R]. Reston: AIAA, 2010.[66] Boyd I D. Computation of hypersonic flows using the direct simulation Monte Carlo method, AIAA-2013-2557[R]. Reston: AIAA, 2013.[67] Burt J M. Monte Carlo simulation of solid rocket exhaust plumes at high altitude[D]. Michigan: Philosophy in the University of Michigan, 2006.[68] Papp J L, Wilmoth R G, Chartrand C C, et al. Simulation of high-altitude plume flow fields using a hybrid continuum CFD/DSMC approach, AIAA-2006-4412[R]. Reston: AIAA, 2006.[69] Schwartzentruber T E, Scalabrin L C, Boyd I D. Hybrid particle-continuum simulations of low Knudsen number hypersonic flows, AIAA-2007-3892[R]. Reston: AIAA, 2007.[70] Zade A Q, Renksizbulut M, Friedman J. Slip/jump boundary conditions for rarefied reacting/non-reacting multi-component gaseous flows [J]. International Journal of Heat and Mass Transfer, 2008, 5(1): 5063-5071.[71] Cai G B, Wang H Y, Zhuang F G. Coupled numerical simulation with Navier-Stokes and DSMC on vacuum plume[J]. Journal of Propulsion on Technology, 1998, 19(4): 57-61 (in Chinese). 蔡国飙, 王慧玉, 庄逢甘. 真空羽流场的Navier-Stokes和DSMC耦合数值模拟[J]. 推进技术, 1998, 19(4): 57-61.[72] Li Z H, Li Z H, Li H Y, et al. Research on CFD/DSMC hybrid numerical method in rarefied flows [J]. Acta Aerodynamica Sinica, 2013, 31(3): 282-287 (in Chinese). 李中华, 李志辉, 李海燕, 等. 过渡流区N-S/DSMC耦合计算研究[J]. 空气动力学学报, 2013, 31(3): 282-287.[73] Zhong J, Ozawa T, Levin D A. Modeling of hypersonic wake flows of slender and blunt bodies, AIAA-2007-0612[R]. Reston: AIAA, 2007.[74] Cheng X L, Dong Y H, Li T L. Computational and experimental studies of ablation effect on electronic characteristic in vehicle wake[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 796-800 (in Chinese). 程晓丽, 董永晖, 李廷林. 模型烧蚀对尾迹电子特性影响的计算和实验研究[J]. 航空学报, 2007, 28(4): 796-800.[75] Dang A L, Kehtarnavaz H, Coats D E. The use of Richardson extrapolation in PNS solutions of rocket nozzle flow, AIAA-1989-2895[R]. Reston: AIAA, 1989.[76] Kawasaki A H, Coats D E, Berker D R. A two-phase, two-dimensional reacting parabolized Navier-Stokes flow solver for the prediction of solid rocket motor flowfields, AIAA-1992-3600[R]. Reston: AIAA, 1992.[77] Rodionov A V. New space-marching technique for exhaust plume simulation, AIAA-2000-3390[R]. Reston: AIAA, 2000.[78] He X Z, Le J L, Song W Y. PNS-NS combined method for solving two-dimensional powered airbreathing hypersonic vehicle’s flowfield [J]. Journal of Aerospace Power, 2009, 24(12): 2741-2747 (in Chinese). 贺旭照, 乐嘉陵, 宋文艳. 二维带动力吸气式高超声速飞行器绕流的PNS-NS混合求解[J]. 航空动力学报, 2009, 24(12): 2741-2747.[79] Yu Z F, Bu S Q, Shi A H, et al. Research on the scaling law for the RCS of underdense turbulent wake of hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(1): 57-61 (in Chinese). 于哲峰, 部绍清, 石安华, 等. 高超声速飞行体亚密湍流尾迹RCS特性的相似规律研究[J]. 空气动力学学报, 2014, 32(1): 57-61.[80] Bian Y G, Xu L G. Aerothermodynamics[M]. Hefei: Press of University of Science and Technology of China, 1997: 346-366 (in Chinese). 卞荫贵, 徐立功. 气动热力学[M]. 合肥:中国科学技术大学出版社, 1997: 346-366.[81] Kang L, Li C X, Liu J Y, et al. The meaning and development status of compressible turbulent flow for high Mach number[J]. Winged Missiles Journal, 2012, 7(1): 78-82 (in Chinese). 康磊, 李椿萱, 刘景源, 等. 高马赫数可压缩湍流研究的意义及发展现状[J].飞航导弹, 2012, 7(1): 78-82.[82] Spalart P R. Trends in turbulence treatments, AIAA-2000-2306[R]. Reston: AIAA, 2000.[83] Shin T H, Liu N S. Ensemble averaged probability density function(APDF) for compressible turbulent reacting flows, NASA/TM-2012-217677[R]. Washington, D.C.: NASA, 2012.[84] Fiolitakis A, Ess P R, Gerlinger P, et al. Non-premixed non-piloted hydrogen-air flame with differential diffusion, AIAA-2012-0179[R]. Reston: AIAA, 2012.[85] Comparison of turbulence models for nozzle-afterbody flows with propulsive jets, NASA TP-3592[R]. Washington, D.C.: NASA, 1996.[86] Denison M R, Lamb J J, Bjorndahl W D, et al. Solid rocket exhaust in the stratosphere: plume diffusion and chemical reactions, AIAA-1992-3399[R]. Reston: AIAA, 1992.[87] Hughes R C, Landrum D B. Computational investigation of electron production in solid rocket plumes, AIAA-1993-2454[R]. Reston: AIAA, 1993.[88] Ma B K, Guo L X, Chang H F. Light scattering characteristics of Al2O3 tail plume plasmas for a spacecraft[J]. Nuclear Fusion and Plasma Physics, 2014, 34(1): 90-96(in Chinese). 马保科, 郭立新, 常红芳. 航天器尾喷焰等离子体Al2O3粒子的光散射特性[J]. 核聚变与等离子体物理, 2014, 34(1):90-96.[89] Reed R A, Calia V S. Review of aluminum oxide rocket exhaust particles, AIAA-1993-2819[R]. Reston: AIAA, 1993.[90] Jeenu R, Pinumalla K, Deepak D. Size distribution of particles in combustion products of aluminized composite propellant[J]. Journal of Propulsion and Power, 2010, 26(4): 715-723.[91] Pelosi A D, Gany A. Modeling the combustion of a solid fuel containing a liquid oxidizer droplet[J]. Journal of Propulsion and Power, 2012, 38(6): 1379-1388.[92] Jin R B, Xiang H J. A new method of numerical simulation of combustion aluminium droplet in exhaust for SRM [J]. Journal of Rocket Propulsion, 2010, 36(6): 25-29(in Chinese). 靳瑞斌, 向红军. 一种新的模拟固体火箭发动机射流铝颗粒燃烧的方法[J]. 火箭推进, 2010, 36(6): 25-29.[93] Yang S H. Numerical study of hydrocarbon fueled scramjets[D]. Mingyang: China Aerodynamics Research and Development Center, 2006 (in Chinese). 杨顺华. 碳氢燃料超燃冲压发动机数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2006.[94] Jiang X Y, Li Z H, Wu J L. Application of gas-kinetic unified algorithm covering various flow regimes for rotational non-equilibrium effect [J]. Chinese Journal of Computational Physics, 2014, 31(4): 403-411 (in Chinese). 蒋新宇, 李志辉, 吴俊林. 气体运动论统一算法在跨流域转动非平衡效应模拟中的应用[J]. 计算物理, 2014, 31(4): 403-411.[95] Li Q B, Fu S. High-order accurate gas-kinetic scheme and turbulence simulation[J]. Science China Physics, Mechanics & Astronomy, 2014, 44(1): 278-284(in Chinese). 李启兵, 符松. 高精度气体动理学格式与湍流模拟[J]. 中国科学: 物理学 力学 天文学, 2014, 44(1): 278-284.[96] Zhao W W, Chen W F. Formulation of a new set of simplified conventional Burnett equations for computational of rarefied hypersonic flows, AIAA-2014-3208[R]. Reston: AIAA, 2014. |