[1] Guo J.Military application value of near space vehicle[J].OME Information, 2010, 27(8): 22-27 (in Chinese). 郭劲. 临近空间飞行器军事应用价值分析[J].光机电信息, 2010, 27(8): 22-27.[2] Knight D.RTO WG 10: test cases for CFD validation of hypersonic flight, AIAA-2002-0433[R].Reston: AIAA, 2002.[3] Saric W S, Muylaert J, Dujarric C.Hypersonic experimental and computational capability, improvement and validation, AGARD-AR-319[R].Hull (Québec): North Atlantic Treaty Organisation, 1996.[4] Slotnick J, Khodadoust A, Alonso J.CFD vision 2030 study: a path to revolutionary computational aerosciences, NASA/CR-2014-218178[R].Washington, D.C.: NASA, 2014.[5] Sarma G S R.Physico-chemical modeling in hypersonic flow simulation[J].Progress in Aerospace Sciences, 2000, 36(3-4): 281-349.[6] Li Z H, Zhang H X.Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J].Acta Aerodynamica Sinica, 2003, 21(3): 255-266 (in Chinese). 李志辉, 张涵信. 稀薄流到连续流的气体运动论统一算法研究[J]. 空气动力学学报, 2003, 21(3): 255-266.[7] Park C.Nonequilibrium hypersonic aerothermodynamics[M]. New York: John Wiley & Sons Inc., 1989.[8] Prabhu D K, Papadopoulos P E, Davies C B, et al. Shuttle orbiter contingency abort aerodynamics: real-gas effects and high angles of attack, RTO-EN-AVT-116[R].Rhode St.Genèse, Belgium: von Kármán Institute, 2004.[9] Smits A J, Martin M P, Girimaji S. Current status of basic research in hypersonic turbulence, AIAA-2009-0151[R]. Reston: AIAA, 2009.[10] Wilkinson S P.A review of hypersonic boundary layer stability experiments in a quiet Mach 6 wind tunnel, AIAA-1997-1819[R]. Reston: AIAA, 1997.[11] Abney A, Ward C, Berridge D, et al.Hypersonic boundary-layer transition experiments in the Boeing/AFOSR Mach-6 quiet tunnel, AIAA-2013-0375[R].Reston: AIAA, 2013.[12] Bi Z X, Zhu N J, Shen Q, et al.Measurements on transition of hypersonic boundary layer over circular cone, AIAA-2007-6728[R].Reston: AIAA, 2007.[13] Holden M S, Wadhams T P, MacLean M, et al.Review of studies of boundary layer transition in hypersonic flows over axisymmetric and elliptic cones conducted in the CUBRC shock tunnels, AIAA-2009-0782[R]. Reston: AIAA, 2009.[14] Gronvall J E, Johnson H B, Candler G V.Hypersonic three-dimensional boundary layer transition on a cone at angle of attack, AIAA-2012-2822[R]. Reston: AIAA, 2012.[15] McDaniel R D, Nantie R P, Hassan H A.Transition onset prediction for high speed flow, AIAA-1999-3792[R].Reston: AIAA, 1999.[16] McDaniel R D, Hassan H A.Role of bypass transition in conventional hypersonic facilities, AIAA-2001-0209[R].Reston: AIAA, 2001.[17] Xiao X, Edwards J R, Hassan H A.Transition flow over an elliptic cone at Mach 8, AIAA-2001-0276[R]. Reston: AIAA, 2001.[18] Papp J L, Dash S M. Extensions of a rapid engineering approach to modeling hypersonic laminar-to-turbulent transitional flows, AIAA-2005-0892[R].Reston: AIAA, 2005.[19] Papp J L, Dash S M.Modeling hypersonic laminar to turbulent transitional flows for 3D geometries using two-equation onset and intermittency transport models, AIAA-2012-0449[R].Reston: AIAA, 2012.[20] Fu S, Wang L.Numerical simulation of hypersonic boundary layer transition using RANS[J].Science China: G, 2009, 39(4): 617-626 (in Chinese). 符松, 王亮. 基于雷诺平均方法的高超音速边界层转捩模拟[J].中国科学: G辑, 2009, 39(4): 617-626.[21] Song B, Li C H.A Favré averaged transition prediction model for hypersonic flows[J].Science China Technology Science, 2010, 40(8): 879-885 (in Chinese). 宋博, 李椿萱.基于Favré平均的高超声速可压缩转捩预测模型[J].中国科学: 技术科学, 2010, 40(8): 879-885.[22] Menter F R, Esch T, Kubacki S.Transition modelling based on local variables[C]//Proceedings of the 5th International Symposium on Engineering Turbulence Modelling and Measurements.Amsterdam: Elsevier, 2002: 555-564.[23] Menter F R, Langtry R B, Likki S R, et al.A correlation-based transition model using local variables, Part I: model formulation[J].Journal of Turbomachinery, 2004, 128(3): 413-422.[24] Langtry R B.A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: Institut für Thermische Strmungsmachinen und Maschinenlaboratorium, 2006.[25] Langtry R B, Menter F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamic codes[J].AIAA Journal, 2009, 47(12): 2894-2906.[26] Malan P, Suluksna K, Juntasaro E.Calibrating the γ-Reθ transition model for commercial CFD, AIAA-2009-1142 [R].Reston: AIAA, 2009.[27] Medida S, Baeder J D.Application of the correlation-based γ-Reθ t transition model to the Spalart-Allmaras turbulence model, AIAA-2011-3979[R].Reston: AIAA, 2011.[28] Krause M, Behr M, Ballmann J.Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model, AIAA-2008-2598[R].Reston: AIAA, 2008.[29] Bensassi K, Lani A, Rambaud P.Numerical investigations of local correlation-based transition model in hypersonic flows, AIAA-2012-3151[R].Reston: AIAA, 2012.[30] Zhang X D, Gao Z H.Numerical discuss to complete empirical correlation in Langtry's transition model[J].Applied Mathematics and Mechanics, 2010, 31(5): 544-552(in Chinese). 张晓东, 高正红.关于补充Langtry的转捩模型经验修正式的数值探讨[J].应用数学和力学, 2010, 31(5): 544-552.[31] Yan P, Mao R, Qiang X.Application of PSE analysis method with transitional turbulence model on hypersonic flows, AIAA-2011-3981[R].Reston: AIAA, 2011.[32] Yan C, Zhang Z, Zhang L X, et al.Characteristic analysis of the upwind scheme[J].Acta Aerodynamica Sinica, 2003, 21(3): 336-341 (in Chinese). 阎超, 张智, 张立新, 等.上风格式的若干性能分析[J].空气动力学学报, 2003, 21(3): 336-341.[33] Godunov S K.A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations[J].Matematicheskii Sbornik, 1959, 47(89): 271-306.[34] van Leer B.Towards the ultimate conservation difference scheme V: a second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1): 101-136.[35] Steger J L, Warming R F.Flux vector splitting of the inviscid gasdynamics equations with application to finite difference methods[J].Journal of Computational Physics, 1981, 40(2): 263-293.[36] van Leer B.Flux vector splitting for Euler equations[C]//Eighth International Conference on Numerical Methods in Fluid Dynamics.Berlin: Springer Heidelberg, 1982: 507-512.[37] Roe P L.Approximate Riemann solvers, parameter vectors and difference schemes[J].Journal of Computational Physics, 1981, 43(2): 357-372.[38] Osher S, Solomon F.Upwind difference schemes for hyperbolic conservation laws[J].Mathematics of Computation, 1982, 38(158): 339-374.[39] Knight D, Longo J, Drikakis D, et al.Assessment of CFD capability for prediction of hypersonic shock interactions[J].Progress in Aerospace Sciences, 2012, 48-49: 8-26.[40] Liou M S, Steffen C J.A new flux splitting scheme[J].Journal of Computational Physics, 1993, 107(1): 23-39.[41] Kitamura K, Shima E.A new pressure flux for AUSM-family schemes for hypersonic heating computations, AIAA-2011-3056[R].Reston: AIAA, 2011.[42] Harten A.High resolution schemes for hypersonic conservation laws[J].Journal of Computational Physics, 1983, 49(3): 357-393.[43] Li S B.Dissipation conservative scheme theory[M].Beijing: Higher Education Press, 1997: 1 (in Chinese). 李松波.耗散守恒格式理论[M].北京: 高等教育出版社, 1997: 1.[44] Zhang H X.None-oscillation, none free coefficients dissipative finite difference scheme[J].Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese). 张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报, 1988, 6(2): 143-165.[45] Chen J Q, Jiang D W, Zhang Y F.The study on the precision of numerical simulation for lateral jets flow and the experiment validation[J].Acta Aerodynamica Sinica, 2010, 28(4): 421-425 (in Chinese). 陈坚强, 江定武, 张毅锋.侧向喷流数值模拟精度及实验验证研究[J].空气动力学学报, 2010, 28(4): 421-425.[46] Mao M L, Jiang D W, Deng X G.Study of hybrid scheme for the prediction of aerodynamic heat transfer-rate in hypersonic laminar flow[J].Acta Aerodynamica Sinica, 2009, 27(3): 275-280 (in Chinese). 毛枚良, 江定武, 邓小刚.高超声速层流气动热预测混合算法研究[J].空气动力学学报, 2009, 27(3): 275-280.[47] Harten A, Engquist B, Osher S, et al.Uniformly high-order accurate essentially non-oscillatory schemes III[J].Journal of Computational Physics, 1987, 71(2): 231-303.[48] Stiriba Y.A nonlinear flux split method for hyperbolic conservation laws[J].Journal of Computational Physics, 2002, 176(1): 20-39.[49] Liu X D, Osher S, Chan T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1): 200-212.[50] Shu C W.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253[R].Washington, D.C.: NASA, 1997.[51] Lin S Y, Hu J J.Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics[J]. AIAA Journal, 2001, 39(3): 371-379.[52] Li X L, Fu D X, Ma Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J].Physics of Fluids, 2010, 22(2): 025105-025105-18.[53] Fu D X.Fluid dynamics numerical simulation[M].Beijing: National Defense Industry Press, 1993: 235-249 (in Chinese). 傅德薰.流体力学数值模拟[M].北京: 国防工业出版社, 1993: 235-249.[54] He G H.Third-order ENN scheme and its application to the calculation of complex hypersonic viscous flows[D].Mianyang: China Aerodynamics Research and Development Center, 1994 (in Chinese). 贺国宏. 三阶ENN格式及其在高超声速黏性复杂流场求解中的应用[D].绵阳:中国空气动力研究与发展中心, 1994.[55] Li Q, Zhang H X, Gao S C.Numerical simulations on supersonic shear layer flow[J].Acta Aerodynamica Sinica, 2000, 18(1): 67-77 (in Chinese). 李沁, 张涵信, 高树椿.关于超声速剪切流动的数值模拟[J]. 空气动力学学报, 2000, 18(1): 67-77.[56] Deng X G, Zhang H X.Developing high-order accurate nonlinear schemes[J].Journal of Computational Physics, 2000, 165(1): 22-44.[57] Deng X G, Mao M L, Liu J C.High-order dissipative weighted compact nonlinear schemes for Euler and Navier-Stokes equations, AIAA-2001-2626[R].Reston: AIAA, 2001.[58] Ren Y X, Liu M, Zhang H X.A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J].Journal of Computational Physics, 2003, 192(2): 365-386.[59] Ren Y X.A robust shock-capturing scheme based on rotated Riemann solvers[J].Computers & Fluids, 2003, 32(10): 1379-1403.[60] Zheng H S, Zhao N, Cheng J.One dimensional high order accurate discontinuous GDQ methods[J].Mathematica Numerica Sinica, 2004, 26(3): 293-302 (in Chinese). 郑华盛, 赵宁, 成娟.一维高精度离散GDQ方法[J].计算数学, 2004, 26(3): 293-302.[61] Zheng H S, Zhao N.A high order accurate TVD difference scheme for hyperbolic conservation laws[J].Chinese Journal of Computational Physics, 2005, 22(1): 13-18 (in Chinese). 郑华盛, 赵宁.双曲型守恒律的一种高精度TVD差分格式[J].计算物理, 2005, 22(1): 13-18.[62] Zheng H S, Zhao N.A high order accurate MmB difference scheme for nonlinear hyperbolic conservation laws[J]. Chinese Journal of Computational Mechanics, 2006, 23(2): 218-222 (in Chinese). 郑华盛, 赵宁.非线性双曲型守恒律的高精度MmB差分格式[J].计算力学学报, 2006, 23(2): 218-222.[63] Walpot L.Numerical analysis of the ARD capsule in S4 wind tunnel[C]//4th European Symposium on Aerothermodynamics for Space Vehicles, Capua.Italy: European Space Agency, 2001.[64] Dennis J E, Schnabel R B.Numerical methods for unconstrained optimization and nonlinear equations[M].Englewood Cliffs, NJ: Prentice-Hall, 1983: 2-14.[65] Tysinger T L, Caughey D A.Implicit multigrid algorithm for the Navier-Stokes equations[C]//29th Aerospace Sciences Meeting.Reno, NV: AIAA, 1991.[66] Hixon R, Visbal M R.Comparison of high-order implicit time marching schemes for unsteady flow calculations, AIAA-2007-4324[R].Reston: AIAA, 2007.[67] Rizzetta D P, Visbal M R, Blaisdell G A.A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation[J].International Journal for Numerical Methods in Fluids, 2003, 42(6): 666-693.[68] Whitfield D L, Taylor L K.Discretized Newton-relaxation solution of high resolution flux-difference split schemes, AIAA-1991-1539[R]. Peston: AIAA, 1991.[69] Yoon S, Jameson A.Lower-upper symmetric gauss-serdel method for the Euler and Navier-Stokes equations[J].AIAA Journal, 1988, 26(9): 1025-1026.[70] Chen R F, Wang Z J.Fast, block lower-upper symmetric Gauss-Seidel scheme for Arbitrary grids[J].AIAA Journal, 2000, 38(12): 2238-2245.[71] Jameson A, Caughey D A.How many steps arerequired to solve the Euler equations of steady, compressibleflow: in search of a fast solution algorithm, AIAA-2001-2673[R].Reston: AIAA, 2001.[72] Pareschi L, Russo G.Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[J].Journal of Scientific Computing, 2005, 25(1): 129-155.[73] Gottlieb S, Mullen J S.An implicit WENO scheme for steady-state computation of scalar hyperbolic equations[J]. Computational Fluid and Solid Mechanics, 2003, 1(2): 1946-1950.[74] Zhong X. Direct numerical simulation of hypersonic boundary-layer transition over blunt leading edges, Part I: a new numerical method and validation, AIAA-1997-0755[R]. Reston: AIAA, 1997.[75] Ekaterinaris J A.Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics[J].Journal of Computational Physics, 1999, 156(2): 272-299.[76] Zhang Y F. Investigations of convergence acceleration and complex flow numerical simulation for high-order accurate scheme(WCNS)[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese). 张毅锋.高精度格式(WCNS)加速收敛和复杂流动数值模拟的应用研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.[77] Buelow P E O, Venkateswaran S, Merkle C L.Stability and convergence analysis of implicit upwind schemes[J].Computers & Fluids, 2001, 30(7-8): 961-988.[78] Chisholm T T, Zingg D W.A Jacobian-free Newton-Krylov algorithm for compressible turbulent flows[J]. Journal of Computational Physics, 2009, 228(9): 3490-3507.[79] AIAA.Guide for the verification and validation of computational fluid dynamics simulations, AIAA-G-077-1998[R].Reston: AIAA, 1998.[80] Oberkampf W L, Roy C J.Verification and validation in scientific computing[M].New York: Cambridge University Press, 2010: 19-143.[81] Zhang H X.On the uncertainty about CFD result[J].Acta Aerodynamica Sinica, 2008, 26(1): 47-49 (in Chinese). 张涵信.关于CFD计算结果的不确定度问题[J].空气动力学学报, 2008, 26(1): 47-49.[82] Champion K S W.Middle atmosphere density data and comparison with models[J].Advances in Space Research, 1990, 10(6): 17-26.[83] Ea L, Hoekstra M.Code verification and verification of calculations with RANS solvers, RTO-MP-AVT-147-P-07[R].New Jersey: North Atlantic Treaty Orgnisation, 2010.[84] Zhang X D, Pelletier D, Trépanier J Y, et al.Numerical assessment of error estimators for Euler equations[J].AIAA Journal, 2001, 39(9): 1706-1715.[85] Qin Y.A discrete transport equation for error estimation in CFD, AIAA-2002-0906R].Reston: AIAA, 2002.[86] Celik I, Li J.Assessment of numerical uncertainty for the calculations of turbulent flow over a backward facing step[J].International Journal for Numerical Methods in Fluids, 2005, 49(9): 1015-1031.[87] Roy C J.Grid convergence error analysis for mixed-order numerical schemes, AIAA-2001-2606[R].Reston: AIAA, 2001.[88] Chen J Q, Zhang Y R.Verification and validation in CFD based on the Richardson extrapolation method[J].Acta Aerodynamica Sinica, 2012, 30(2): 176-183 (in Chinese). 陈坚强, 张益荣.基于Richardson插值法的CFD验证和确认方法的研究[J].空气动力学学报, 2012, 30(2): 176-183.[89] Oberkampf W L, Trucano T G.Validation methodology in computational fluid dynamics, AIAA-2002-2549[R].Reston: AIAA, 2002.[90] Perez R A.Uncertainty analysis of computational fluid dynamics via polynomial chaos[D].Blacksburg: Viginia Polytechnic Institute and State University, 2008.[91] Walters R W, Huyse L.Uncertainty analysis for fluid mechaics with applications, NASA/CR-2002-211449[R].Washington, D.C.: NASA, 2002. |