航空学报 > 2015, Vol. 36 Issue (1): 120-134   doi: 10.7527/S1000-6893.2014.0231

更准确、更精确、更高效——高超声速流动数值模拟研究进展

唐志共, 张益荣, 陈坚强, 毛枚良, 张毅锋, 刘化勇   

  1. 中国空气动力研究与发展中心, 绵阳 621000
  • 收稿日期:2014-07-25 修回日期:2014-09-15 出版日期:2015-01-15 发布日期:2014-09-16
  • 通讯作者: 陈坚强,Tel.: 0816-2463011 E-mail: jq-chen@263.net E-mail:jq-chen@263.net
  • 作者简介:唐志共 男, 博士, 研究员, 博士生导师。主要研究方向:超声速与高超声速空气动力学研究。 Tel: 0816-2472011 E-mail: tangzhigong@sina.com;陈坚强 男, 博士, 研究员, 博士生导师。主要研究方向:高超声速数值模拟研究。 Tel: 0816-2463011 E-mail: jq-chen@263.net
  • 基金资助:

    国家自然科学基金 (11372342)

More fidelity, more accurate, more efficient—progress on numerical simulations for hypersonic flow

TANG Zhigong, ZHANG Yirong, CHEN Jianqiang, MAO Meiliang, ZHANG Yifeng, LIU Huayong   

  1. China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2014-07-25 Revised:2014-09-15 Online:2015-01-15 Published:2014-09-16
  • Supported by:

    National Nature Science Foundation of China (11372342)

摘要:

从准度、精度和效率3方面回顾了近几十年来高超声速流动数值模拟研究的进展。在物理模型方面,介绍了高超声速数值模拟中高温气体效应、稀薄气体效应以及湍流效应的建模与模拟,基于雷诺平均Navier-Stokes(RANS)方程重点对现阶段较为关注的高超声速边界层转捩的模式理论研究进行了介绍。在空间离散算法方面,主要介绍了高超声速数值模拟中常用的二阶精度迎风格式以及高阶精度格式的发展及其应用。在时间推进方面,主要回顾了隐式时间推进方法的发展及其应用。在误差和不确定度估计方面,主要介绍了其概念、来源以及常用的分析方法,同时给出了迭代误差估计、Richardson外插法以及敏感性导数方法等初步研究结果。最后,讨论了高超声速流动数值模拟中下一步需关注的问题。

关键词: 高超声速流动, 数值模拟, 物理建模, 数值方法, 误差, 不确定度

Abstract:

The progress of numerical simulations capability, which is related to fidelity, accuracy and efficiency, for prediction of hypersonic flow during the last several decades are reviewed. For physical modeling, the current status of modeling and simulation about high-temperature gas effects, rarefied gas effects and turbulence effects in hypersonic flow simulations is reviewed. And great emphasis is placed on hypersonic boundary layer transition modeling based on Reynolds-averaged Navier-Stokes (RANS) equations. For spatial discretization schemes, a review of development and application for usual 2nd order upwind schemes and high-order schemes are given. For time marching schemes, development and application for implicit time marching schemes is briefly summarized. For uncertainty quantification, a review of its concept, source and analysis method is firstly addressed, and then the primitive results of iterative error estimation, spatial discretization error analyses using Richardson extrapolation and uncertainty quantification using sensitivity derivatives are also presented. At last, some possible future directions on numerical simulations for hypersonic flow are discussed.

Key words: hypersonic flow, numerical simulation, physical modeling, numerical method, error, uncertainty

中图分类号: