[1] Trexler C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft, 1974, 11(9): 589-591.[2] Holland S D. Mach 10 experimental database of a three-dimensional scramjet inlet flow field, NASA TM 4686[R]. Washington, D.C.: NASA, 1995.[3] Rodi P E, Trexler C A. The effect of bodyside compression on forward and aft swept sidewall compression inlets at Mach 4, AIAA-1994-2708[R]. Reston: AIAA, 1994.[4] Panaras A G. Review of the physics of swept-shock/ boundary layer interactions[J]. Progress of Aerospace Science, 1996, 32(2): 173-244.[5] Kiersey J L, Snow M L. Modular inlet investigation, Report AQR/66-1[R]. Baltimore: Aeronautics Div. Research and Development, Applied Physics Lab., Johns Hopkins University, 1966.[6] Molder S, Romeskie J M. Modular hypersonic inlets with conical flow, AGARD CP-30[R]. Montreal: McGill University, 1968.[7] Smart M K. Design of three-dimensional hypersonic inlet with rectangular to elliptical shape transition, AIAA-1998-0960[R]. Reston: AIAA, 1998.[8] Smart M K. Experimental testing of a hypersonic inlet with rectangular-to elliptical shape transition, AIAA-1999-0085[R]. Reston: AIAA, 1999.[9] Smart M K, White J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet, AIAA-2002-0508[R]. Reston: AIAA, 2002.[10] Smart M K, Trexler C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293.[11] Smart M K, Ruf E G. Free-jet testing of a REST scramjet at off-design conditions, AIAA-2006-2955[R]. Reston: AIAA, 2006.[12] Gollan R J. Design of modular, shape-transitioning inlets for a conical hypersonic vehicle[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.[13] Taylor T M. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths, AIAA-2008-2635[R]. Reston: AIAA, 2008.[14] Gollan R J. Investigation of REST-class hypersonic inlet designs, AIAA-2011-2254[R]. Reston: AIAA, 2011.[15] Ferlemann P G, Gollan R J. Parametric geometry, structured grid generation, and initial design study for REST-class hypersonic inlets[C]//Jannaf Airbreathing Propulsion Subcommittee Meeting, 2009.[16] Nan X J, Zhang K Y, Jing Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996. (in Chinese) 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J].航空学报, 2011, 32(6): 988-996.[17] Nan X J, Zhang K Y, Jing Z G. Experimental study of hypersonic inward turning inlets with innovative basic flowfield[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 90-96.(in Chinese) 南向军, 张堃元, 金志光. 采用新型基准流场的高超内收缩进气道试验研究[J].航空学报, 2014, 35(1): 90-96.[18] Fluent Inc. FLUENT user's guide[M]. Pittsburgh: Fluent Inc., 2003.[19] Moin P. Progress in large eddy simulation of turbulence flows, AIAA-1997-15761[R]. Reston: AIAA, 1997.[20] Wang Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科技大学, 2008. |