[1] Feng L C, He Y Q, Qiao B, et al. Corrosion and protection of metal and alloy in marine environment[J]. Hot Working Technology, 2013, 42(24): 13-17. (in Chinese) 冯立超, 贺毅强, 乔斌, 等. 金属及合金在海洋环境中的腐蚀与防护[J]. 热加工工艺, 2013, 42(24): 13-17.[2] Kermanidis A T, Petroyiannis P V, Pantelakis S G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy[J]. Theoretical and Applied Fracture Mechanics, 2005, 43(1): 121-132.[3] Wang Z P, Xu T J, Su J X. Research on relationship of civil aircraft cargo compartment corrosion and its influencing factors based on data model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 940-948. (in Chinese) 王志平, 徐天杰, 苏景新. 基于数据模型的某型民用飞机货舱区域腐蚀影响因素研究[J]. 航空学报, 2012, 33(5): 940-948.[4] Mu Z T, Chen D H, Zhu Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579. (in Chinese) 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579.[5] Chen B, Liu J Z, Wang H W, et al. Advance in fatigue behavior for pre-corroded aluminium alloy[J]. Failure Analysis and Prevention, 2011, 6(3): 186-192. (in Chinese) 陈勃, 刘建中, 王浩伟, 等. 腐蚀预损伤铝合金的疲劳行为研究进展[J]. 失效分析与预防, 2011, 6(3): 186-192.[6] He C W, Cai X S, Li S Q. Corrosion and corrosion fatigue of typical aircraft joints[J]. Corrosion & Protection, 2006, 27(3): 118-121. (in Chinese) 贺崇武, 蔡新锁, 李素强. 飞机典型连接件腐蚀及腐蚀疲劳试验研究[J]. 腐蚀与防护, 2006, 27(3): 118-121.[7] Cheng Z H. Study on corrosion behaviors of the LY12CZ aluminum alloy plane component[D]. Harbin: Harbin Engineering University, 2006. (in Chinese) 程宗辉. LYl2CZ铝合金飞机构件腐蚀行为研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.[8] Sun S Q, Zhao Y B, Zheng Q F, et al. Evolution mechanism of pitting of Al clad 7075 and 2024 aluminium alloy in coastal[J]. Journal of Chinese Society for Corrosion and Protection, 2012, 32(3): 195-202. (in Chinese) 孙霜青, 赵予兵, 郑弃非, 等. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202.[9] Chen S J, Yuan Q M, He J P, et al. Experimental evaluation of computing method of instantaneous corrosion rate for 7075 aluminum alloy[J]. Journal of Materials Engineering, 2004(12): 43. (in Chinese) 陈素晶, 袁庆铭, 何建平, 等. 7075铝合金瞬时腐蚀速率的计算和试验验证[J]. 材料工程, 2004(12): 43.[10] Liu X L, He J P, Chen S J. Electrochemical noise of 7075 aluminum alloy during a simulated atmospheric corrosion process[J]. Corrosion Science and Protection Technology, 2006, 18(5): 386-388. (in Chinese) 刘晓磊, 何建平, 陈素晶. 电化学噪声表征7075铝合金的模拟大气腐蚀过程[J]. 腐蚀科学与防护技术, 2006, 18(5): 386-388.[11] Burns J T, Gupta V K, Agnew S R, et al. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al-Zn-Mg-Cu alloys[J]. International Journal of Fatigue, 2013, 55: 268-275.[12] Hui L, Zhou S, Xu L, et al. Influence of saline environment on fatigue property of pre-corroded aluminum alloy[J]. Journal of Aeronautical Materials, 2012, 32(3): 73-78. (in Chinese) 回丽, 周松, 许良, 等. 盐水环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 航空材料学报, 2012, 32(3): 73-78.[13] Feng X F. Investigation on corrosion fatigue strength of 2024-T351 alloy in 3.5% NaCl salt solution[D]. Hangzhou: Zhejiang University, 2014. (in Chinese) 冯先锋. 盐水环境下2024-T351铝合金的腐蚀疲劳强度研究[D]. 杭州: 浙江大学, 2014.[14] GB/T 3075-2008 Metallic materials—fatigue testing—axial-force-controlled method[S]. Beijing: Standards Press of China, 2008. (in Chinese) GB/T 3075-2008 金属材料 疲劳试验 轴向力控制方法[S]. 北京: 中国标准出版社,2008.[15] GB/T 24176-2009 Metallic materials—fatigue testing—statistical planning and analysis of data[S]. Beijing: Standards Press of China, 2009.(in Chinese) GB/T 24176-2009 金属材料 疲劳试验 数据统计方案与分析方法[S]. 北京: 中国标准出版社,2009.[16] Huang X G. Mechanism study of pit evolution and crack propagation for corrosion fatigue[D]. Shanghai: Shanghai Jiaotong University, 2013. (in Chinese) 黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究[D]. 上海: 上海交通大学, 2013.[17] Liu D X. Corrosion and protection of materials[M]. Xi'an: Northwestern Polytechnical University Press, 2006: 185-186. (in Chinese) 刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2006: 185-186. |