[1] MOORE A. Gas turbine engine internal air systems:A review of the requirements and the problems[C]//Proceedings of ASME 1975 Winter Annual Meeting. New York:ASME, 2015. [2] KUTZ K J, SPEER T M. Simulation of the secondary air system of aero engines[J].Journal of Turbomachinery, 1994, 116(2):306-315. [3] MULLER Y. Secondary air system model for integrated thermomechanical analysis of a jet engine[C]//Proceedings of ASME Turbo Expo 2008:Power for Land, Sea, and Air. New York:ASME, 2009:1359-1374. [4] ALEXIOU A, MATHIOUDAKIS K. Secondary air system component modeling for engine performance simulations[J].Journal of Engineering for Gas Turbines and Power, 2009, 131(3):031202. [5] REY VILLAZÓN J M, WILDOW T, BENTON R, et al. Impact of the secondary air system design parameters on the calculation of turbine discs windage[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. New York:ASME, 2014. [6] GANINE V, HILLS N, MILLER M, et al. Implicit heterogeneous 1D/2D coupling for aero-thermo-mechanical simulation of secondary air systems[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:ASME, 2015. [7] GANINE V, AMIRANTE D, HILLS N J. Aero-thermo-mechanical modelling and validation of transient effects in a high pressure turbine internal air system[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. New York:ASME, 2016. [8] GALLAR L, CALCAGNI C, PACHIDIS V, et al. Development of a one-dimensional dynamic gas turbine secondary air system model-part I:Tool components development and validation[C]//Proceedings of ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2010:457-465. [9] CALCAGNI C, GALLAR L, PACHIDIS V. Development of a one-dimensional dynamic gas turbine secondary air system model-part II:Assembly and validation of a complete network[C]//Proceedings of ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2010:435-443. [10] KIM Y, SIMPSON A R, LAMBERT M F. The effect of orifices and blockages on unsteady pipe flows[C]//World Environmental and Water Resources Congress 2007. Reston:American Society of Civil Engineers, 2007:1-10. [11] MAY D, CHEW J W. Response of a disk cavity flow to gas turbine engine transients[C]//Proceedings of ASME Turbo Expo 2010:Power for Land, Sea, and Air. New York:ASME, 2010:1113-1122. [12] MAY D, CHEW J W, SCANLON T J. Prediction of de-swirled radial inflow in rotating cavities with hysteresis[C]//Proceedings of ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. New York:ASME, 2013:2037-2046. [13] 张美华, 刘振侠, 胡剑平, 等. 旋转盘腔瞬态响应特性的研究[J].推进技术, 2014, 35(8):1056-1062. ZHANG M H, LIU Z X, HU J P, et al. Study of transient response characteristics of rotating disc cavity[J].Journal of Propulsion Technology, 2014, 35(8):1056-1062(in Chinese). [14] 毛莎莎, 王锁芳, 胡伟学. 典型进气函数下转静盘腔瞬态响应特性研究[J].推进技术, 2019, 40(1):175-183. MAO S S, WANG S F, HU W X. Study on transient response characteristics of rotor-stator cavity with typical intake function[J].Journal of Propulsion Technology, 2019, 40(1):175-183(in Chinese). [15] OKITA Y. Transient thermal and flow field in a turbine disk rotor-stator system[C]//Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air. New York:ASME, 2008:1271-1282. [16] 杨丽红, 沈航明, 宋元明. 等温容器放气过程中对流换热模型的研究[J].中国机械工程, 2014, 25(18):2489-2495. YANG L H, SHEN H M, SONG Y M. Study on convection heat transfer model of isothermal chamber during discharge[J].China Mechanical Engineering, 2014, 25(18):2489-2495(in Chinese). [17] DING S T, YU H, QIU T, et al. Modeling of the cavity response to rapid transient considering the effect of heat transfer:GT2018-75264[R].New York:ASME, 2018. [18] 丁水汀, 于航, 邱天. 非绝热单孔容腔瞬态响应的零维建模[J].北京航空航天大学学报, 2018, 44(2):215-222. DING S T, YU H, QIU T. Zero-dimensional modeling for transient response of non-adiabatic cavity with single opening[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):215-222(in Chinese). [19] 丁水汀, 于航, 邱天, 等. 单孔容腔瞬态充气换热的理论分析方法[J].航空学报, 2020, 41(1):123221. DING S T, YU H, QIU T, et al. Theoretical analysis method for heat transfer in transient charging of a cavity with single opening[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123221(in Chinese). [20] GALLAR L, CALCAGNI C, LLORENS C, et al. Time accurate modelling of the secondary air system response to rapid transients[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2011, 225(8):946-958. [21] 朱鹏飞. 航空发动机空气系统瞬态过程的数值模拟与实验研究[D]. 西安:西北工业大学, 2018. ZHU P F. Numeriacal simulation and experimental study on the transient process of the air system in aeroengine[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese). [22] NIKOLAIDIS T, WANG H N, LASKARIDIS P. Transient modelling and simulation of gas turbine secondary air system[J].Applied Thermal Engineering, 2020, 170:115038. [23] 纪国剑. 航空发动机典型篦齿封严泄漏特性的数值和实验研究[D]. 南京:南京航空航天大学, 2008. JI G J. Numerical and experimental investigation of sealing characteristics on typical labyrinth seals in aeroengine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). [24] 胡剑平, 刘振侠, 朱鹏飞, 等. 多容腔耦合的瞬态响应实验研究[J].推进技术, 2020, 41(3):615-622. HU J P, LIU Z X, ZHU P F, et al. An experimental analysis of coupled transient response for multi-cavities[J].Journal of Propulsion Technology, 2020, 41(3):615-622(in Chinese). [25] 曹楠, 窦志伟, 罗翔, 等. 轴向通流旋转盘腔换热特性[J].航空动力学报, 2018, 33(5):1178-1185. CAO N, DOU Z W, LUO X, et al. Heat transfer characteristics of a rotating cavity with axial throughflow of cooling air[J].Journal of Aerospace Power, 2018, 33(5):1178-1185(in Chinese). [26] COREN D, CHILDS P N, LONG C A. Windage sources in smooth-walled rotating disc systems[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2009, 223(4):873-888. [27] 潘耘峰. 燃气透平冷却空气系统流体网络法研究[D]. 北京:中国科学院研究生院, 2011. PAN Y F. Investigation on fluid network method for the analysis of turbine air cooling system[D]. Beijing:Graduate School of the Chinese Academy of Sciences, 2011(in Chinese). |