首页 >

液体火箭发动机故障的尾焰光谱诊断—从定性到定量

闫松,李祎,秦红强,崔星,高玉闪   

  1. 西安航天动力研究所
  • 收稿日期:2025-11-10 修回日期:2026-02-02 出版日期:2026-02-03 发布日期:2026-02-03
  • 通讯作者: 高玉闪

Exhaust-Plume Spectroscopic Diagnostics of Liquid Rocket Engine Faults: From Qualitative to Quantitative—A Review

  • Received:2025-11-10 Revised:2026-02-02 Online:2026-02-03 Published:2026-02-03
  • Contact: Yushan /Gao

摘要: 随着重复使用液体火箭发动机的工程需求不断增长,其在高热、高压与剧烈燃烧等极端条件下的运行稳定性与安全性面临严峻挑战。尾焰光谱诊断因其非接触、高灵敏和多参数感知特性,成为支撑发动机状态监测与故障识别的重要技术路径。首先分析了液体火箭发动机研制中的关键挑战及故障诊断的技术需求,系统阐述了基于原子发射光谱的诊断机制,并梳理了国内外尾焰光谱诊断的研究进展与发展现状。进一步,总结了尾焰光谱诊断的核心关键技术,包括光谱—材料—故障模式数据库构建、金属杂质可控掺杂燃烧试验、羽流中合金浓度定量反演、飞行环境光谱诊断及液氧煤油发动机的谱线干扰与应对策略。随后,对法布里–珀罗干涉仪、傅里叶变换红外光谱与激光诱导击穿光谱三类代表性测量技术在尾焰光谱获取中的适用性、精度与工程可实现性进行评估与比较。最后,展望了尾焰光谱诊断的未来发展趋势,聚焦于多模态融合、人工智能分析、片上光谱—边缘计算协同及近/中/远红外与太赫兹扩展等方向,强调其在发动机智能运行与预测性维护中的广阔应用前景。

关键词: 重复使用, 液体火箭发动机, 尾焰光谱, 故障诊断, 定量反演, 人工智能

Abstract: With the growing engineering demand for reusable liquid rocket engines, ensuring stable and safe operation under extreme conditions—high heat flux, high chamber pressure, and violent combustion—has become increasingly challenging. Plume spectroscopic diagnostics, featuring non-contact measurement, high sensitivity, and multi-parameter sensing capability, has emerged as an important technical route for engine health monitoring and fault identification. This paper first analyzes the key challenges in liquid rocket engine development and the diagnostic requirements for fault monitoring. The diagnostic mechanism based on atomic emission spectroscopy is then systematically elaborated, followed by a review of domestic and international research progress and the current state of the art in plume spectroscopy. Next, the core enabling technologies are summarized, including the construction of a spectrum–material–fault-mode database, controlled metal-impurity doping combustion tests, quantitative inversion of alloy species concentrations in the plume, flight-environment spectral diagnostics, and spectral-line interference and mitigation strategies for LOX/kerosene engines. The applicability, accuracy, and engineering feasibility of three representative measurement techniques—Fabry–Pérot interferometry, Fourier-transform infrared spectroscopy, and laser-induced breakdown spectroscopy—are further evaluated and compared for plume spectral acquisition. Finally, future trends are discussed, with emphasis on multimodal data fusion, artificial-intelligence-enabled analysis, on-chip spectroscopy combined with edge computing, and extensions toward the near-/mid-/far-infrared and terahertz bands, highlighting the broad prospects of plume spectroscopy for intelligent operation and predictive maintenance of liquid rocket engines.

Key words: reusable, liquid rocket engine, exhaust plume spectroscopy, fault diagnosis, quantitative inversion, artificial intelligence

中图分类号: