首页 >

一种姿态平稳性最优的解析动力着陆制导方法(航天运输系统自主制导与控制技术专栏)

李文博1,龚胜平2   

  1. 1. 清华大学航天航空学院
    2. 北京航空航天大学
  • 收稿日期:2025-10-28 修回日期:2026-01-26 出版日期:2026-02-03 发布日期:2026-02-03
  • 通讯作者: 龚胜平

An Analytical Powered Landing Guidance Method with Optimal Attitude Smoothness

Wen-Bo LI1,Gong Shengping   

  • Received:2025-10-28 Revised:2026-01-26 Online:2026-02-03 Published:2026-02-03
  • Contact: Gong Shengping

摘要: 可回收火箭动力着陆过程中,传统数值制导方法存在计算负担大、实时性难以保障等问题,且常因忽略姿态角平稳性而导致控制指令剧烈波动。针对上述问题,提出一种以姿态角平稳性最优为目标的解析制导律设计方法。首先,构建相关最优控制问题,并证明其最优解具有简洁的三次函数形式,从而将复杂轨迹优化问题转化为参数解析寻优问题,显著提升了计算效率。进一步通过引入双阶段制导框架,实现了启控点的自适应判断;采用定常推力基准设计,降低了对发动机深度变推力的要求;结合气动补偿策略,增强了算法在复杂飞行环境中的适应性。仿真结果表明,所提方法生成的姿态指令剖面与理论最优解高度吻合,计算耗时极短,具备优异的在线实时潜力;在推力调节范围受限及存在参数偏差的严苛条件下,仍能稳定实现高精度终端状态控制,展现出良好的工程应用前景。

关键词: 解析制导, 迭代制导, 最优控制, 轨迹优化, 垂直着陆

Abstract: During the recovery of reusable rockets, traditional numerical guidance methods suffer from high computational burden and challenges in ensuring real-time performance. Moreover, they often neglect attitude smoothness, leading to drastic fluctua-tions in control commands. To address these issues, this paper proposes an analytical guidance law designed with optimal attitude smoothness as the objective. First, an optimal control problem is formulated, and it is proven that the optimal solution takes a simple cubic function form. This transforms the complex trajectory optimization problem into an analytical parameter optimization problem, significantly improving computational efficiency. Furthermore, by introducing a dual-phase guidance framework, adaptive determination of the ignition point is achieved. A constant-thrust baseline design is adopted to reduce the requirement for deep throttling of the engine. Combined with an aerodynamic compensation strategy, the algorithm's adaptability in complex flight environments is enhanced. Simulation results demonstrate that the attitude command profile generated by the proposed method closely matches the theoretical optimal solution, with extremely short computation time, indicating excellent potential for online real-time application. Even under harsh conditions such as limited thrust adjustment range and parameter deviations, the method stably achieves high-precision terminal state control, demonstrating promising prospects for engineering applications.

Key words: Analytical guidance, Iterative guidance, Optimal control, Trajectory optimization, Vertical landing

中图分类号: