| [1] 刘凯, 张永亮, 聂聆聪. 一种组合动力飞行器模态转换过程轨迹优化与控制方案[J]. 宇航学报, 2024, 45(3): 443-451. LIU K, ZHANG Y L, NIE L C. A trajectory optimization and control scheme for mode conversion process of turbine-based combined cycle vehicle[J]. Journal of Astronautics, 2024, 45(3):443-451. (in Chinese)[2] 姚德清, 魏毅寅, 杨志红, 等. 空天飞行器制导控制技术研究进展与展望[J]. 宇航学报, 2020, 41(7): 850-859. YAO D Q, WEI Y Y, YANG Z H, et al. Progress and prospect of research on guidance and control technology of aerospace vehicle[J]. Journal of Astronautics, 2020, 41(7): 850-859. (in Chinese)[3] 刘凯, 郭健, 周文雅, 等. 吸气式组合动力高超声速飞行器上升段制导方法研究[J]. 宇航学报, 2020, 41(8): 1023-1031.LIU K, GUO J, ZHOU W Y, et al. Investigation on ascent guidance law for air-breathing combined-cycle hypersonic vehicle[J]. Journal of Astronautics, 2020, 41(8): 1023-1031. (in Chinese)[4] 佘文学, 刘凯, 乔鸿. 组合动力空天飞行器制导技术发展分析[J]. 战术导弹技术, 2020, (5): 52-65. SHE W X, LIU K, QIAO H. Development analysis of guidance technology for aerospace vehicle based on combination engine[J]. Tactical Missile Technology, 2020, (5): 52-65. (in Chinese)[5] Light T, Hamilton T, Pfeifer S. Trends in U.S. air force aircraft mishap rates (1950–2018): RAND_RRA257-1[R]. RAND, 2020.[6] Mckee S. Flight mechanics and control for an unpowered reusable launch vehicle[D]. Columbia: University of Missouri, 2011: 34-55.[7] 江星浩. 水平着陆高超声速飞行器再入全程轨迹设计[D]. 哈尔滨: 哈尔滨工业大学, 2019: 52-71. JIANG X H. Full-course reentry trajectory design for horizontal landing hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2019: 52-71. (in Chinese)[8] 颜晓明, 梁艳迁, 张延坤, 等. 组合动力飞行器能量管理段轨迹设计方法[J]. 空天技术, 2023, (8): 44-51. YAN X M, LIANG Y Q, ZHANG Y S, et al. Trajectory design method for energy management phase of combined power vehicle[J]. Aerospace Technology, 2023, (8): 44-51. (in Chinese)[9] 刘智勇, 何英姿. 基于在线轨迹生成的末端能量管理段复合制导技术[J]. 战术导弹技术, 2017, (4): 66-72.LIU Z Y, HE Y Z. Composite guidance based on onboard trajectory generation for terminal area energy management[J]. Tactical Missile Technology, 2017, (4): 66-72. (in Chinese)[10] 龚宇莲, 孟斌, 李毛毛. 基于单参数迭代的TAEM在线轨迹生成方法[J]. 航空学报, 2020, 41(S2): 724289.GONG Y L, MENG B, LI M M. Online trajectory design method for terminal area energy management based on single parameter iteration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 4(S2): 724289. (in Chinese)[11] 权申明, 王松艳, 晁涛, 等. 减速板故障下的RLV末端区域能量管理算法设计[J]. 宇航学报, 2020, 41(6): 820-828. QUAN S M, WANG S Y, CHAO T, et al. Design of terminal area energy management algorithm for RLV with airbrake failure[J]. Journal of Astronautics, 2020, 41(6): 820-828. (in Chinese)[12] 穆凌霞. 无动力RLV末端轨迹规划与制导技术研究[D]. 西安: 西北工业大学, 2018: 115-140. MU L X. Trajectory planning and guidance system design for an unpowered RLV in the terminal area[D]. Xi’an: Northwestern Polytechnical University, 2018: 115-140. (in Chinese)[13] 穆凌霞, 余翔, 张友民. RLV末端能量管理段三维鲁棒制导方法[J]. 宇航学报, 2021, 42(9): 1162-1171.MU L X, YU X, ZHANG Y M. Trajectory planning and guidance for terminal area energy management phase of reusable launch vehicle[J]. Journal of Astronautics, 2021, 42(9): 1162-1171. (in Chinese)[14] Mu L X, Xie G, Yu X, et al. Robust guidance for a reusable launch vehicle in terminal phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1996-2011. [15] Lim S H, Cho S B, Lee E Y. Guidance to control arrival angle and altitude for an unpowered aerial vehicle[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(4): 1078-1091. [16] 周敏, 周军, 郭建国. RLV末端能量管理段轨迹在线规划与制导[J]. 宇航学报, 2015, 36(2): 151-157. ZHOU M, ZHOU J, GUO J G. On-line trajectory planning and guidance for terminal area energy management of reusable launch vehicle[J]. Journal of Astronautics, 2015, 36(2): 151-157. (in Chinese)[17] Dong Q, Zhang C F. Trajectory optimization for RLV in TAEM phase using adaptive Gauss pseudospectral method[J]. Science China Information Sciences, 2019, 62(1): 010206. [18] 王磊, 王毓, 孙力帆. 一种基于障碍物登陆点检测的全局路径规划算法[J]. 中国惯性技术学报, 2022, 30(3): 388-394.WANG L, WANG L, SUN L F. A global path planning algorithm based on obstacle landing node detection[J]. Journal of Chinese Inertial Technology, 2022, 30(3): 388-394. (in Chinese)[19] 余翔, 姜陈, 段思睿, 等. 改进A*算法和人工势场法的路径规划[J]. 系统仿真学报, 2024, 36(3): 782-794.YU X, JIANG C, DUAN S R, et al. Path planning for improvement of A* algorithm and artificial potential field method[J]. Journal of System Simulation, 2024, 36(3): 782-794. (in Chinese)[20] 李世昌. 基于A*与人工势场的四旋翼无人机路径规划算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 33-47. LI S C. Research on path planning algorithm of quadrotor based on A* and artificial potential field[D]. Harbin: Harbin Institute of Technology, 2017: 33-47. (in Chinese)[21] 童亚男, 肖本贤. 基于无人叉车行驶时间优化的改进A?算法[J]. 合肥工业大学学报(自然科学版), 2023, 46(11): 1447-1453, 1478. TONG Y N, XIAO B X, Improved A* algorithm based on the optimization of driving time of unmanned forklifts[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(11): 1447-1453, 1478. (in Chinese)[22] 刘涛. 基于改进A*算法的无人船路径规划研究[J]. 舰船科学技术, 2022, 44(5): 134-137. LIU T. Research on unmanned ship path planning based on improved A* algorithm[J]. Ship Science and Technology, 2022, 44(5): 134-137. (in Chinese)[23] 蒋勤文, 度红望, 聂勇, 等. 基于改进A*算法的管路初始路径优化[J]. 大连海事大学学报, 2023, 49(2): 141-147. JIANG Q W, DU H W, NIE Y, et al. Pipeline initial path optimization based on improved A? algorithm[J]. Journal of Dalian Maritime University, 2023, 49(2): 141-147. (in Chinese)[24] 王迈新, 闫莉, 李雨菲. 基于改进A*算法的车间AGV路径规划[J]. 自动化与仪表, 2023, 38(11): 45-59. WANG M X, YAN L, LI Y F. Path planning of AGV in workshop based on improved A* algorithm[J]. Automation & Instrumentation, 2023, 38(11): 45-59. (in Chinese)[25] 陈子豪. 一种基于A*算法的图搜索路径优化平滑方法[J]. 现代制造技术与装备, 2022, (9): 44-47. CHEN Z H. A graph search path optimization smoothing method based on A* algorithm[J]. Modern Manufacturing Technology and Equipment, 2022, (9): 44-47. (in Chinese)[26] Dolgov D, Thrun S, Montemerlo M, et al. Path planning for autonomous vehicles in unknown semi-structured environments[J]. The International Journal of Robotics Research, 2010, 29(5): 485-501. [27] 黄湘松, 于日龙, 潘大鹏, 等. 面向目标定位精度的主从式无人机编队航迹规划方法[J]. 电子学报, 2023, 51(9): 2289-2300.HUANG X S, YU R L, PAN D P, et al. Route planning method of master-slave UAV formation for target positioning accuracy[J]. Acta Electronica Sinica, 2023, 51(9): 2289-2300. (in Chinese)[28] 曹彦博, 颜京才, 李旭升, 等. 基于改进混合A*算法的自动泊车系统路径搜索方法[J]. 汽车技术, 2023, (6): 37-41. CAO Y B, YAN J C, LI X S, et al. A method of path search for automatic parking system based on improved hybrid A* algorithm[J]. Automobile Technology, 2023, (6): 37-41. (in Chinese)[29] 赵克刚, 曾润林, 梁志豪, 等. 基于圆弧样条参考路径的改进混合A*泊车路径规划算法[J]. 科学技术与工程, 2024, 24(17): 7376-7386. ZHAO K G, ZENG R L, LIANG Z H, et al. Improved hybrid A* parking path planning algorithm based on arc spline reference path[J]. Science Technology and Engineering, 2024, 24(17): 7376-7386. (in Chinese)[30] 赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 74-86. ZHAO H Y. Spacecraft re-entry dynamics and guidance[M]. Changsha: National University of Defense Technology Press, 1997: 74-86. [31] 王震, 李春涛, 王双双, 等. 高超声速无人机末端能量管理段无动力返回制导方案[J]. 战术导弹技术, 2021, (5): 71-81.WANG Z, LI C T, WANG S S, et al. Unpowered return guidance scheme for the terminal area energy management of hypersonic UAV[J]. Tactical Missile Technology, 2021, (5): 71-81. (in Chinese)[32] 郭杰, 郭阳, 王肖, 等. RLV双层迭代末端能量管理段轨迹设计方法[J]. 飞行力学, 2023, 41(1): 54-62. GUO J, GUO Y, WANG X, et al. Trajectory design method of two-layer iterative terminal area energy management for RLV[J]. Flight Dynamics, 2023, 41(1): 54-62. (in Chinese)[33] Mehta U, Aftosmis M, Bowles J, et al. Skylon Aerospace Plane and Its Aerodynamics and Plumes[J]. Journal of Spacecraft and Rockets, 2016, 53(2): 340-353. |