| [1] |
赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 56-98.
|
|
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: State-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 56-98 (in Chinese).
|
| [2] |
权晓伟, 杨晖. 美军高能激光武器毁伤试验研究[J]. 军民两用技术与产品, 2024(4): 53-59.
|
|
QUAN X W, YANG H. Researc on U. S. military high-energy laser weapon damage test[J]. Dual Use Technologies & Products, 2024(4): 53-59 (in Chinese).
|
| [3] |
宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46(1): 435-477.
|
|
SONG H W, HUANG C G. Progress in thermal-mechantical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 435-477 (in Chinese).
|
| [4] |
ALLHEILY V, LACROIX F, EICHHORN A, et al. An experimental method to assess the thermo-mechanical damage of CFRP subjected to a highly energetic 1.07 μm-wavelength laser irradiation[J]. Composites Part B: Engineering, 2016, 92: 326-331
|
| [5] |
NIINO H, HARADA Y, FUJISAKII A. Thermal damage of carbon fiber reinforced plastic by IR fiber laser irradiation[J]. Journal of Laser Micro Nanoengineering, 2017, 12(3): 235-238.
|
| [6] |
张家雷, 王伟平, 刘仓理. 激光辐照下二维编织碳纤维/环氧树脂复合材料的烧蚀特征[J]. 复合材料学报, 2017, 34(3): 494-500.
|
|
ZHANG J L, WANG W P, LIU C L. Ablation characteristics of 2D braided carbon fiber/epoxy composites under laser irradiation[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 494-500 (in Chinese).
|
| [7] |
LIU Y C, WU C W, HUANG Y H, et al. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation[J]. Optics and Lasers in Engineering, 2017, 88: 91-101.
|
| [8] |
熊刘结, 王家伟, 聂国华. 激光辐照下CFRP层合板的烧蚀与强度分析[J]. 力学季刊, 2022, 43(4): 771-781.
|
|
XIONG L J, WANG J W, NIE G H. Analysis of ablation and strength of CFRP laminated structures under laser irradiation[J]. Chinese Quarterly of Mechanics, 2022, 43(4): 771-781 (in Chinese).
|
| [9] |
李伟, 方国东, 李玮洁, 等. 碳纤维增强复合材料微观烧蚀行为数值模拟[J]. 力学学报, 2019, 51(3): 835-844.
|
|
LI W, FANG G D, LI W J, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 835-844 (in Chinese).
|
| [10] |
NAN P Y, SHEN Z H, HAN B, et al. The influences of laminated structure on the ablation characteristics of carbon fiber composites under CW laser irradiation[J]. Optics & Laser Technology, 2019, 116: 224-231.
|
| [11] |
LI X, HOU W T, HAN B, et al. Thermal response during volumetric ablation of carbon fiber composites under a high intensity continuous laser irradiation[J]. Surfaces and Interfaces, 2021, 23: 101032.
|
| [12] |
DIMITRIENKO Y I. Thermomechanical behaviour of composites under local intense heating by irradiation[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(6): 591-598.
|
| [13] |
ZHAO W N, MA T, SONG H W, et al. Effects of tangential supersonic airflow on the laser ablation of laminated CFRP[J]. Journal of Materials Research and Technology, 2021, 14: 1985-1997.
|
| [14] |
李清源. 强激光对飞行器的毁伤效应[M]. 北京: 中国宇航出版社, 2012.
|
|
LI Q Y. Damage effects of vehicles irradiated by intense lasers[M]. Beijing: China Astronautic Publishing House, 2012 (in Chinese).
|
| [15] |
LOEB A L. Thermal conductivity: VIII, a theory of thermal conductivity of porous materials[J]. Journal of the American Ceramic Society, 1954, 37(2): 96-99.
|
| [16] |
CHAMIS C C. Simplified composite micromechanics equations of hygral, thermal, and mechanical properties[J]. Transactions of the Asae, 1984, 39(3): 999-1004.
|
| [17] |
HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1981, 47(2): 329-334.
|
| [18] |
DAUDEVILLE L, ALLIX O, LADEVEZE P. Delamination analysis by damage mechanics: Some applications[J]. Composites Engineering, 1995, 5(1): 17-24.
|
| [19] |
LIANG H R, LI W J, LI Y, et al. Machine learning-based multi-objective optimization and physical-geometrical competitive mechanisms for 3D woven thermal protection composites[J]. International Journal of Heat and Mass Transfer, 2024, 232: 125920.
|
| [20] |
DONG K, LIU K, ZHANG Q, et al. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites[J]. International Journal of Heat and Mass Transfer, 2016, 102: 501-517.
|
| [21] |
李干. 激光辐照下纤维复合材料宏-细观效应的数值模拟研究[D]. 长沙: 国防科学技术大学, 2012.
|
|
LI G. Numerical Research on the macro-mecro effect of laser irradiation to fibrous composites[D]. Changsha: National University of Defense Technology, 2010 (in Chinese).
|
| [22] |
王新峰. 机织复合材料多尺度渐进损伤研究[D]. 南京: 南京航空航天大学, 2007.
|
|
WANG X F. Multi-scale analyses of damage evolution in woven composite materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
|
| [23] |
NELSON J B. Determination of kinetic parameters of six ablation polymers by thermogravimetric analysis[M]. Washington: National Aeronautics and Space Administration, 1967.
|
| [24] |
颜淮. C/SiC复合材料微细观氧化损伤分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
YAN H. Oxidation damage anaiysis of C/SiC composites on the microscpic scale[D]. Haibin: Harbin Institute of Technology, 2021 (in Chinese).
|
| [25] |
徐薇, 陈华. 不同海拔高度大气压和氧含压的变化与对比探讨[J]. 西藏科技, 2018(3): 59-61.
|
|
XU W, CHEN H. Changes and comparison of atmospheric pressure and oxygen content at different altitudes[J]. Xizang Science and Technology, 2018(3): 59-61 (in Chinese).
|