[1] 张颖哲, 倪大明, Incheol LEE, 等.缩比发动机喷嘴热喷流噪声试验[J].航空学报, 2018, 39(12):122446. ZHANG Y Z, NI D M, LEE I, et al.Test on hot jet noise of scaled engine nozzle[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122446(in Chinese). [2] 童福林, 周桂宇, 孙东, 等.膨胀效应对激波/湍流边界层干扰的影响[J].航空学报, 2020, 41(9):123731. TONG F L, ZHOU G Y, SUN D, et al.Expansion effect on shock wave and turbulent boundary layerinteractions[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(9):123731(in Chinese). [3] WALLACE C E.Structural response and acoustic fatigue for random progressive waves and diffuse fields[J].Journal of Spacecraft and Rockets, 1985, 22(3):340-344. [4] STEINWOLF A, WHITE R G, WOLFE H F.Simulation of jet-noise excitation in an acoustic progressive wave tube facility[J].The Journal of the Acoustical Society of America, 2001, 109(3):1043-1052. [5] HOLLKAMP J, GORDON R.The importance of structural-acoustic coupling in progressive wavetesting[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Reston:AIAA, 2011. [6] PITT D M, LIGUORE S L, THOMAS M J, et al.Thermal acoustic test and analysis model updating and correlation[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2013. [7] POLITO T, MARULO F.Probabilistic finite elements for vibroacoustic applications[C]//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference).Reston:AIAA, 2006. [8] SESTIERI A, CARCATERRA A.Vibroacoustic:The challenges of a mission impossible?[J].Mechanical Systems and Signal Processing, 2013, 34(1-2):1-18. [9] SAITO A, NISHIKAWA Y, YAMASAKI S, et al.Equivalent orthotropic elastic moduli identification method for laminated electrical steel sheets[J].Mechanical Systems and Signal Processing, 2016, 72-73:607-628. [10] LIU Y, CATALAN J C.External mean flow influence on sound transmission through finite clamped double-wall sandwich panels[J].Journal of Sound and Vibration, 2017, 405:269-286. [11] ALLEN M J, VLAHOPOULOS N.Integration of finite element and boundary element methods for calculating the radiated sound from a randomly excited structure[J].Computers & Structures, 2000, 77(2):155-169. [12] CHUNG Y, FOIST B.Evaluation of acoustic component coupling to the vibroacoustic response predictions[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston:AIAA, 2007. [13] XIE G, THOMPSON D J, JONES C J C.A modelling approach for the vibroacousticbehaviour of aluminium extrusions used in railway vehicles[J].Journal of Sound and Vibration, 2006, 293(3-5):921-932. [14] CULLA A, D'AMBROGIO W, FREGOLENT A, et al.Vibroacoustic optimization using a statistical energy analysis model[J].Journal of Sound and Vibration, 2016, 375:102-114. [15] HAN F, BERNHARD R J, MONGEAU L G.Predictionof flow-induced structural vibration and sound radiation using energy flow analysis[J].Journal of Sound and Vibration, 1999, 227(4):685-709. [16] DURANT C, ROBERT G, FILIPPI P J T, et al.Vibroacoustic response of a thin cylindrical shell excited by a turbulent internal flow:Comparison between numerical prediction and experimentation[J].Journal of Sound and Vibration, 2000, 229(5):1115-1155. [17] MEYER V, MAXIT L, RENOU Y, et al.Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis[J].Mechanical Systems and Signal Processing, 2017, 93:104-117. [18] SOEDEL W.Similitude approximations for vibrating thin shells[J].The Journal of the Acoustical Society of America, 1971, 49(5B):1535-1541. [19] REZAEEPAZHAND J, SIMITSES G J.Design of scaled down models for predicting shell vibrationrepsonse[J].Journal of Sound and Vibration, 1996, 195(2):301-311. [20] ROSA S D, FRANCO F, RICCI F, et al.First assessment of the scaling procedure for the evaluation of the damped structural response[J].Journal of Sound and Vibration, 1997, 204(3):540-548. [21] HANSON D, RANDALL R B, ANTONI J, et al.Cyclostationarity and the cepstrum for operational modal analysis of MIMO systems-Part II:obtaining scaled mode shapes through finite element model updating[J].Mechanical Systems and Signal Processing, 2007, 21(6):2459-2473. [22] SINGHATANADGID P, NA SONGKHLA A.An experimental investigation into the use of scaling laws for predicting vibration responses of rectangular thinplates[J].Journal of Sound and Vibration, 2008, 311(1-2):314-327. [23] ADAMS C, BÖS J, SLOMSKI E M, et al.Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures[J].Mechanical Systems and Signal Processing, 2018, 110:590-610. [24] FRANCO F, ROBIN O, CIAPPI E, et al.Similitude laws for the structural response of flat plates under a turbulent boundary layer excitation[J].Mechanical Systems and Signal Processing, 2019, 129:590-613. [25] ZHAO X J, AI B C.Predicting the structural response induced by turbulent boundary layer in wind tunnel[J].AIAA Journal, 2016, 55(4):1221-1229. [26] ZHAO X J, CHEN H B, LEI J M, et al.A scaling procedure for measuring thermal structural vibration generated by wall pressure fluctuation[J].Chinese Journal of Aeronautics, 2019, 32(4):815-825. [27] ROSA S D, FRANCO F.Exact and numerical responses of a plate under a turbulent boundary layer excitation[J].Journal of Fluids and Structures, 2008, 24(2):212-230. [28] JOSHI P, MULANI S B, SLEMP W C H, et al.Vibro-acoustic optimization of turbulent boundary layer excited panel with curvilinear stiffeners[J].Journal of Aircraft, 2012, 49(1):52-65. [29] GENG Q, LI H, LI Y M.Dynamic and acoustic response of a clamped rectangular plate in thermal environments:Experiment and numerical simulation[J].The Journal of the Acoustical Society of America, 2014, 135(5):2674-2682. |