[1] 黄淼, 吴彬, 蒋荣, 等. 水上飞机在波浪上运动响应特性试验研究[J]. 实验流体力学, 2015, 29(3):41-46. HUANG M, WU B, JIANG R, et al. An experimental study about motion response of a seaplane on waves[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):41-46(in Chinese). [2] ELMO J M. A brief investigation of the effect of waves on the take-off resistance of a seaplane:NASA TN D-165[R]. Washington, D.C.:NASA, 1959. [3] HOPKINS R M. A study of the effects of regular waves on the landing and take-off distance of a seaplane:AD 648848[R]. Fort Belvoir:ASTIA, 1966. [4] GERARD F. A systematic study of the rough water performance of planning boats:AD 708694[R]. Fort Belvoir:ASTIA, 1969. [5] GERARD F. A Systematic study of the rough-water performance of planning boats (Irregular Wave-Part Ⅱ):AD 728788[R]. Fort Belvoir:ASTIA, 1971. [6] 朱鑫, 段文洋, 陈云赛, 等. 滑行艇规则波中迎浪运动响应的时域解[J]. 哈尔滨工程大学学报, 2013, 34(9):1094-1099. ZHU X, DUAN W Y, CHEN Y S, et al. The time domain solution to motion response of a planning craft in regular head wave[J]. Journal of Harbin Engineering University, 2013, 34(9):1094-1099(in Chinese). [7] 朱鑫, 段文洋, 马山, 等. 棱柱型滑行艇在规则波中迎浪运动响应的频域解[J]. 哈尔滨工程大学学报, 2012, 33(11):1326-1333. ZHU X, DUAN W Y, MA S, et al. The frequency domain solution for the motion simulation of the prismatic planning craft in regular head waves[J]. Journal of Harbin Engineering University, 2012, 33(11):1326-1333(in Chinese). [8] 王硕, 苏玉民, 庞永杰, 等. 高速速滑行艇在规则波中的纵向运动数值研究[J]. 哈尔滨工程大学学报, 2014, 35(1):45-52. WANG S, SU Y M, PANG Y J, et al. Numerical study on longitudinal motions of a high-speed planning craft in regular waves[J]. Journal of Harbin Engineering University, 2014, 35(1):45-52(in Chinese). [9] 邹劲, 杨静雷, 蒋一, 等. 三体滑行艇在规则波中的数值预报[J]. 中国舰船研究, 2013, 8(3):12-15. ZOU J, YANG J L, JIANG Y, et al. Numerical prediction on the motion of trimaran-planing boats on regular waves[J]. Chinese Journal of Ship Research, 2013, 8(3):12-15(in Chinese). [10] 苏玉民, 赵金鑫, 陈庆童, 等. 滑行艇在规则波中的数值模拟[J]. 船舶力学, 2013, 17(6):583-591 SU Y M, ZHAO J X, CHEN Q T, et al. Numerical simulation of the planning vessel in regular waves[J]. Journal of Ship Mechanics, 2013, 17(6):583-591(in Chinese). [11] 唐彬彬, 吴彬, 王明振, 等. 抑波槽宽度对水陆两栖飞机喷溅性能影响对比试验研究[J]. 航空科学技术, 2015, 26(1):73-78. TANG B B, WU B, WANG M Z, et al. Comparative test study for the effect of groove type spray suppressor widths on amphibious aircraft spray performance[J]. Aeronautical Science & Technology, 2015, 26(1):73-78(in Chinese). [12] 武庆威, 高霄鹏, 吴彬. 水上飞机滑行阶段静水阻力性能的一种估算方法[J]. 船海工程, 2013, 42(3):154-157. WU Q W, GAO X P, WU B. A method to evaluate the resistance of seaplane sliding in stil1 water[J]. Ship & Ocean Engineering, 2013, 42(3):154-157(in Chinese). [13] 江婷, 蒋荣, 吴彬. 水上飞机纵向稳定性判别方法研究[J]. 航空计算技术, 2014, 44(6):75-77. JIANG T, JIANG R, WU B. Method of distinguish longitudinal motion stability of seaplane[J]. Aeronautical Computing Technique, 2014, 44(6):75-77(in Chinese). [14] 黄淼, 廉滋鼎, 左仔滨, 等. 水陆两栖飞机模型水池波浪试验研究[J]. 航空科学技术, 2016, 27(1):74-78. HUANG M, LIAN Z D, ZUO Z B, et al. The study of scaled model tank tests in waves of an amphibian[J]. Aeronautical Science & Technology, 2016, 27(1):74-78(in Chinese). [15] 黄淼, 张家旭, 李成华, 等. 水陆两栖飞机船体水动力矩特性研究[J]. 科学技术与工程, 2015, 15(36):214-218. HUANG M, ZHANG J X, LI C H, et al. The hydrodynamic moment performance study of a amphibian[J]. Science Tcchnology and Engineering, 2015, 15(36):214-218(in Chinese). [16] 褚林塘. 水上飞机水动力设计[M]. 北京:航空工业出版社, 2014:90-92, 119-120. CHU L T. Seaplane hydrodynamic design[M]. Beijing:Aviation Industry Press, 2014:90-92, 119-120(in Chinese). [17] CAMPBELL C, YATES, JOHN M R. Effect of length-beam on the aerodynamic characteristics of flying-boat hulls:NACA TN. 1305[R]. Washington, DC.:NACA, 1947. [18] JOHN G L, JOHN M R. Effect of length beam ratio on the aerodynamic characteristics of flying boat hulls without wing Interference:NACA RM. L8A16[R]. Washington, D.C.:NACA, 1948. [19] JOE W B, CHARLIE C G, HOWARD Z. Effect of length-beam ration on resistance and spray of three models of flying-boat hulls:NACA ARR.3J23[R]. Washington, D.C.:NACA, 1943. [20] ARTHUR W C, WALTER E W, J. Effect of an increase in hull length-beam ratio from 15 to 20 on the hydrodynamic characteristics of flying boats:NACA RM L9G05[R]. Washington, D.C.:NACA, 1949. [21] WALTER E W, PAUL W B. Effect of an increase in angle of dead rise on the hydrodynamic characteristics of a high length beam ratio hull:NACA TN 2297[R]. Washington, D.C.:NACA, 1951. [22] WALTER J K. Effect of forebody warp and increase in afterbody length on the hydrodynamic qualities of a flying-boat hull of high length beam ratio:NACA TN 1980[R]. Washington, D.C.:NACA, 1949. [23] 黄淼, 吴彬, 许靖锋, 等. 水陆两栖飞机船体主滑行面设计与试验研究[C]//2015年第二届中国航空科学技术大会论文集. 北京:中国航空学会, 2015:789-792. HUANG M, WU B, XU J F, et al. The design and test study on main planning hull of a amphibian[C]//2015 The Second Proceeding of China Aeronautical Science and Technology. Beijing:Chinese Society of Aeronautics and Astronaustic, 2015, 789-792(in Chinese). [24] TOM Ⅱ. 水上飞机的流体力学[M]. 中国人民解放军总字916部队, 1963:7-8. TOM Ⅱ. Seaplane hydrodynamic[M]. People's Liberation Army troops No.916, 1963:7-8(in Chinese). [25] 俞湘三, 陈泽梁, 楼连根, 等. 船舶性能试验技术[M]. 上海:上海交通大学出版社, 1991:38-39. YU X S, CHEN Z L, LOU L G, et al. Ship performance test technology[M]. Shanghai:Shanghai Jiaotong University Press, 1991:38-39(in Chinese). [26] 张培红, 周乃春, 邓有奇, 等. 雷诺数对飞机气动特性的影响研究[J]. 空气动力学学报, 2012, 30(6):693-698. ZHANG P H, ZHOU N C, DENG Y Q, et al. The effects of Reynolds number on airplane aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(6):693-698(in Chinese). |