| [1] |
赵创新, 遆好建, 李照宏, 等. 多无人机协同编队控制及试飞验证[J]. 航空学报, 2024, 45(17): 530249.
|
|
ZHAO C X, TI H J, LI Z H, et al. Multi-UAV cooperative formation control and flight test verification[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530249 (in Chinese).
|
| [2] |
柳汀, 周国鑫, 徐扬, 等. 融合信息图的优化哈里斯鹰多无人机动态目标搜索[J]. 航空学报, 2024, 45(S1): 730773.
|
|
LIU T, ZHOU G X, XU Y, et al. Optimization of fusion information map Harris eagle multi-UAV dynamic target search[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730773 (in Chinese).
|
| [3] |
严超, 张泽旭, 袁帅, 等. GNSS拒止下面向目标监视的多无人机定位与控制方法[J]. 宇航学报, 2023, 44(10): 1534-1543.
|
|
YAN C, ZHANG Z X, YUAN S, et al. Multi-UAV localization and control method for target surveillance with GNSS denied[J]. Journal of Astronautics, 2023, 44(10): 1534-1543 (in Chinese).
|
| [4] |
尹洪玉, 吴宇, 梁天骄. 固定翼无人机巡逻覆盖协同路径规划方法[J]. 航空学报, 2024, 45(6): 328944.
|
|
YIN H Y, WU Y, LIANG T J. Cooperative path planning for patrol coverage of fixed wing UAV[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328944 (in Chinese).
|
| [5] |
ZHAO S Y. Affine formation maneuver control of multiagent systems[J]. IEEE Transactions on Automatic Control, 2018, 63(12): 4140-4155.
|
| [6] |
ZHANG Y W, LI S S, WANG S P, et al. Distributed bearing-based formation maneuver control of fixed-wing UAVs by finite-time orientation estimation[J]. Aerospace Science and Technology, 2023, 136: 108241.
|
| [7] |
CHEN L M, MEI J, LI C J, et al. Distributed leader-follower affine formation maneuver control for high-order multiagent systems[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4941-4948.
|
| [8] |
DIMAROGONAS D V, KYRIAKOPOULOS K J. A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems[J]. Automatica, 2008, 44(10): 2648-2654.
|
| [9] |
GARCIA DE MARINA H, JAYAWARDHANA B, CAO M. Distributed rotational and translational maneuvering of rigid formations and their applications[J]. IEEE Transactions on Robotics, 2016, 32(3): 684-697.
|
| [10] |
ZHAO S Y, ZELAZO D. Translational and scaling formation maneuver control via a bearing-based approach[J]. IEEE Transactions on Control of Network Systems, 2017, 4(3): 429-438.
|
| [11] |
HAN T R, LIN Z Y, ZHENG R H, et al. A barycentric coordinate-based approach to formation control under directed and switching sensing graphs[J]. IEEE Transactions on Cybernetics, 2018, 48(4): 1202-1215.
|
| [12] |
LIN Z Y, WANG L L, HAN Z M, et al. Distributed formation control of multi-agent systems using complex Laplacian[J]. IEEE Transactions on Automatic Control, 2014, 59(7): 1765-1777.
|
| [13] |
LIN Z Y, WANG L L, CHEN Z Y, et al. Necessary and sufficient graphical conditions for affine formation control[J]. IEEE Transactions on Automatic Control, 2016, 61(10): 2877-2891.
|
| [14] |
XU Y, ZHAO S Y, LUO D L, et al. Affine formation maneuver control of high-order multi-agent systems over directed networks[J]. Automatica, 2020, 118: 109004.
|
| [15] |
LI D Y, MA G F, XU Y, et al. Layered affine formation control of networked uncertain systems: A fully distributed approach over directed graphs[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 6119-6130.
|
| [16] |
LIN Y J, LIN Z Y, SUN Z Y, et al. A unified approach for finite-time global stabilization of affine, rigid, and translational formation[J]. IEEE Transactions on Automatic Control, 2021, 67(4): 1869-1881.
|
| [17] |
POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
|
| [18] |
WANG J N, DING X J, WANG C Y, et al. Affine formation control for multi-agent systems with prescribed convergence time[J]. Journal of the Franklin Institute, 2021, 358(14): 7055-7072.
|
| [19] |
GAO K, LIU Y F, ZHOU Y, et al. Practical fixed-time affine formation for multi-agent systems with time-based generators[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2022, 69(11): 4433-4437.
|
| [20] |
WANG Y J, SONG Y D, HILL D J, et al. Prescribed-time consensus and containment control of networked multiagent systems[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1138-1147.
|
| [21] |
DING T F, GE M F, XIONG C H, et al. Prescribed-time formation tracking of second-order multi-agent networks with directed graphs[J]. Automatica, 2023, 152: 110997.
|
| [22] |
NING B D, HAN Q L, ZUO Z Y. Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach[J]. Automatica, 2019, 105: 406-414.
|
| [23] |
ZHAO Y, GAO K, HUANG P F, et al. Specified-time affine formation maneuver control of multiagent systems over directed networks[J]. IEEE Transactions on Automatic Control, 2024, 69(3): 1936-1943.
|
| [24] |
TANG C C, ZHANG H T, CAO H S, et al. Time-varying formation control of autonomous surface vehicles based on affine observer[J]. IEEE Transactions on Industrial Electronics, 2024, 71(10): 12952-12963.
|
| [25] |
QIN B Y, ZHANG D, TANG S, et al. Three-dimensional distributed affine formation maneuver control of fixed-wing UAV swarm with actuator faults and saturation constraints[C]∥2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings. Singapore: Springer Nature Singapore, 2024: 1278-1296.
|
| [26] |
XU Y, QU Y F, LUO D L, et al. Distributed predefined-time estimator-based affine formation target-enclosing maneuver control for cooperative underactuated quadrotor UAVs with fault-tolerant capabilities[J]. Chinese Journal of Aeronautics, 2025, 38(1): 103042.
|
| [27] |
ZUO Z Y, LIU C J, HAN Q L, et al. Unmanned aerial vehicles: Control methods and future challenges[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(4): 601-614.
|
| [28] |
WU Z H, NI J K, QIAN W, et al. Composite prescribed performance control of small unmanned aerial vehicles using modified nonlinear disturbance observer[J]. ISA Transactions, 2021, 116: 30-45.
|
| [29] |
HUANG D Q, HUANG T P, QIN N, et al. Finite-time control for a UAV system based on finite-time disturbance observer[J]. Aerospace Science and Technology, 2022, 129: 107825.
|
| [30] |
LIU K, WANG R J, ZHENG S J, et al. Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay[J]. Nonlinear Dynamics, 2022, 107(3): 2363-2390.
|
| [31] |
ZHAO S L, ZHENG J Y, YI F, et al. Exponential predefined time trajectory tracking control for fixed-wing UAV with input saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6406-6419.
|
| [32] |
马骥, 陈向勇, 温广辉, 等. 随机切换拓扑下无人机集群预设时间跟踪控制[J]. 航空学报, 2024, 45(S1): 730793.
|
|
MA J, CHEN X Y, WEN G H, et al. Preset time trac control of UAV cluster unde random switching topology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730793 (in Chinese).
|
| [33] |
CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica, 2011, 47(3): 452-465.
|
| [34] |
HU Q L, SHAO X D, ZHANG Y M, et al. Nussbaum-type function-based attitude control of spacecraft with actuator saturation[J]. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2927-2949.
|
| [35] |
LIU B J, GUO Y, LI A J. Nussbaum-based finite-time containment control for multi-UAVs with input saturation and velocity constraints[J]. Aerospace Science and Technology, 2023, 139: 108407.
|
| [36] |
LIU B J, GUO Y, LI A J, et al. Distributed nussbaum-based finite-time containment control for multi-UAVs with actuator saturation and faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(4): 3505-3520.
|
| [37] |
XU Y, ZHAO S Y, LUO D L, et al. Affine formation maneuver control of multi-agent systems with directed interaction graphs[C]∥2018 37th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2018: 4563-4568.
|
| [38] |
WEN C Y, ZHOU J, LIU Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance[J]. IEEE Transactions on Automatic Control, 2011, 56(7): 1672-1678.
|
| [39] |
HU Q L, SHAO X D, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 331-341.
|
| [40] |
XIE S Z, CHEN Q. Predefined-time disturbance estimation and attitude control for rigid spacecraft[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2024, 71(4): 2089-2093.
|
| [41] |
WANG C L, LIN Y. Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems[J]. Automatica, 2015, 54: 16-24.
|
| [42] |
ARAKI M, KONDO B. Stability and transient behavior of composite nonlinear systems[J]. IEEE Transactions on Automatic Control, 1972, 17(4): 537-541.
|