航空学报 > 2024, Vol. 45 Issue (12): 428818-428818   doi: 10.7527/S1000-6893.2023.28818

基于磁流变技术的主动控制拦阻装置设计与分析

郝嘉煜1,2, 彭一明1,2, 魏小辉1,2(), 马辉3   

  1. 1.南京航空航天大学 航空航天结构力学及控制全国重点实验室,南京 210016
    2.南京航空航天大学 飞行器先进设计技术国防重点学科实验室,南京 210016
    3.中国航空工业集团公司金城南京机电液压工程研究中心,南京 211106
  • 收稿日期:2023-04-04 修回日期:2023-05-07 接受日期:2023-06-07 出版日期:2023-07-10 发布日期:2023-07-07
  • 通讯作者: 魏小辉 E-mail:wei_xiaohui@nuaa.edu.cn
  • 基金资助:
    航空科学基金(20200028052010);国防卓越青年科学基金(2018-JCJQ-ZQ-053);中央高校基本科研业务费专项资金(NT2022002);江苏省自然科学基金(BK20220910);国家自然科学基金(52202441)

Design and analysis of active control arresting device based on MR technology

Jiayu HAO1,2, Yiming PENG1,2, Xiaohui WEI1,2(), Hui MA3   

  1. 1.State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Key Laboratory of Fundamental Science for National Defense?Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.AVIC Jincheng Nanjing Engineering Institute of Aircraft System,Nanjing 211106,China
  • Received:2023-04-04 Revised:2023-05-07 Accepted:2023-06-07 Online:2023-07-10 Published:2023-07-07
  • Contact: Xiaohui WEI E-mail:wei_xiaohui@nuaa.edu.cn
  • Supported by:
    Aeronautical Science Foundation of China(20200028052010);National Defense Outstanding Youth Science Foundation(2018-JCJQ-ZQ-053);The Fundamental Research Funds for the Central Universities(NT2022002);Natural Science Foundation of Jiangsu Province(BK20220910);National Natural Science Foundation of China(52202441)

摘要:

针对传统液压拦阻在面对多种类无人机拦阻功能适配性不足的缺点,基于磁流变技术和主动控制技术,提出了一种闭环拦阻装置。运用AMESim搭建了拦阻系统动力学仿真模型,并基于序列二次规划法对拦阻系统结构参数进行了选定,基于选定的参数,对拦阻过程进行动态特性仿真,并对主动控制系统介入前后性能进行比对分析。为了更准确的模拟无人机拦阻过程的动态特性,基于有限段法构建拦阻索,并引入VL Motion构建多学科协同联合仿真。研究结果表明:主动控制介入后挂索瞬间峰值加速度相比加入前下降23%,拦阻距离下降9%,拦阻时间缩短3%,并且在挂索后无人机持续减速的过程中,加入主动控制后无人机加速度变化更加缓和;针对不同质量无人机,基于磁流变技术的主动控制拦阻装置比液压拦阻系统的适配性更好,拦阻距离和拦阻过载更加集中可控。

关键词: 固定翼无人机, 拦阻装置, 拦阻动力学, 磁流变技术, 序列二次规划法

Abstract:

To address the shortcomings of traditional hydraulic arresting system which faces the lack of adaptability of multiple types of unmanned aerial vehicles, UAVs, a closed-loop arresting device based on magnetorheological, MR technology and active control technology is proposed. AMESim is used to build the dynamic simulation model, and the structural parameters of the arresting system are selected based on the sequential quadratic programming method. Furthermore, the dynamic characteristics of arresting process are simulated, and the performance before and after the active control intervention is compared and analyzed. It more accurately simulate the dynamic characteristics of UAV arresting process, a more realistic arresting cable model is constructed based on the finite segment method. VL Motion is introduced to constitute the multidisciplinary collaborative co-simulation. The research results show that: by adding active control, the instantaneous peak acceleration of the UAV catching by cable decreases by 23%. The arresting distance decreases by 9% and the arresting time decreases by 3%. During the deceleration process, the deceleration changes of the UAV are more acceptable when the active control is added. In the face of different weights of UAVs, suitability of the new arresting device is better than the traditional hydraulic arresting system. The arresting distance and the acceleration of UAV are more centralized and controllable for the new arresting device.

Key words: fixed-wing UAV, arresting devices, arresting dynamics, MR technology, sequential quadratic programming method

中图分类号: