航空学报 > 2025, Vol. 46 Issue (4): 230828-230828   doi: 10.7527/S1000-6893.2024.30828

固体力学与飞行器总体设计

地月三体系统新型太阳帆周期轨道设计与分析

安诗宇, 刘明(), 李化义, 吴凡   

  1. 哈尔滨工业大学 卫星技术研究所,哈尔滨 150001
  • 收稿日期:2024-06-17 修回日期:2024-08-05 接受日期:2024-08-27 出版日期:2024-09-03 发布日期:2024-09-02
  • 通讯作者: 刘明 E-mail:mingliu23@hit.edu.cn
  • 基金资助:
    国家自然科学基金(62303138);上海航天科技创新基金(SAST2021-030);黑龙江省头雁计划;广东省基础与应用基础研究重大项目(2019B030302001)

Design and applications of novel periodic orbits with solar sail in Earth-Moon system

Shiyu AN, Ming LIU(), Huayi LI, Fan WU   

  1. Research Center of Satellite Technology,Harbin Institude of Technology,Harbin 150001,China
  • Received:2024-06-17 Revised:2024-08-05 Accepted:2024-08-27 Online:2024-09-03 Published:2024-09-02
  • Contact: Ming LIU E-mail:mingliu23@hit.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62303138);Shanghai Aerospace Science and Technology Program(SAST2021-030);Heilongjiang Touyan Team;Guangdong Major Project of Basic and Applied Basic Research(2019B030302001)

摘要:

地月三体系统中的周期轨道在深空探测中具有重要的理论价值和工程意义。太阳帆航天器不需要消耗推进剂,在长期的空间任务中具有很大的潜力。在地月三体系统中增加太阳帆推进,将在地月系统中开辟更多有应用价值的轨道。在太阳帆地月圆型限制性三体问题的简化非自治动力学模型下,引入了一种新的太阳帆指向律,使得太阳帆加速度与帆的状态向量相关,在此条件下,推导了系统的雅可比矩阵。将该指向律应用到近直线Halo轨道中,结合改进的微分修正法和太阳帆加速度延拓寻找新的轨道族。数值仿真验证了该指向律和该数值计算方法在非自治系统周期轨道设计中的有效性。分析表明,建立的新型太阳帆周期轨道族可用于月球照明和月球高纬度地区观测。最后,将周期轨道迁移到非共面双椭圆扰动模型中,通过二级微分修正方法得到了扰动下的拟周期轨道,分析表明其照明性能和覆盖性能可以保持。进一步计算了不同初始时刻对应的拟周期轨道,分析表明当地月质心和月球越接近其轨道的近心点时,扰动因素对轨道的影响越大。

关键词: 地月系统, 限制性三体问题, 太阳帆, 周期轨道, 扰动模型

Abstract:

Periodic orbits in the Earth-Moon three-body system hold significant theoretical and engineering values for deep space exploration. Solar sail spacecraft, which do not require propellant, show great potential for long-term space missions. Introducing the solar sail propulsion technology in the Earth-Moon three-body system can create more valuable orbits. In previous studies, the state transition matrices of dynamical systems are not found to include the solar sail acceleration term. In this paper, a new solar sail pointing law is proposed based on a simplified non-autonomous dynamical model for the solar sail Earth-Moon circular restricted three-body problem, making acceleration of the solar sail dependent on the sail state vector. On this basis, the Jacobian matrix of the system is derived. This pointing law is applied to the near rectilinear Halo orbit. Using an improved differential correction method in combination with a continuation on solar sail acceleration, new orbit families are generated. Numerical simulations verify the effectiveness of the pointing law and numerical computation method. Analysis shows that the newly established solar sail periodic orbit families can be used for lunar illumination and observation of high-latitude lunar regions. Finally, periodic orbits are migrated to a non-coplanar bi-elliptical perturbation model, and the quasi-periodic orbits under perturbation are obtained using the second-order differential correction method. It is shown through analysis that the orbits’ illumination and coverage performance can be maintained under perturbation. Further calculations of the quasi-periodic orbits corresponding to different initial moments indicate that the closer the Earth-Moon Barycenter (EMB) and the Moon are to the perigee of their orbits, the greater the impact of perturbative factors on the orbit is.

Key words: Earth-Moon system, restricted three-body problem, solar sail, periodic orbit, perturbation model

中图分类号: