航空学报 > 2024, Vol. 45 Issue (22): 330306-330306   doi: 10.7527/S1000-6893.2024.30306

远距离逆行轨道的近距离编队轨道保持策略

敖海跃1,2, 杨驰航3, 石玉1, 张皓1,2()   

  1. 1.中国科学院 空间应用工程与技术中心,北京 100094
    2.中国科学院大学 航空宇航学院,北京 100049
    3.北京控制工程研究所 北京 100094
  • 收稿日期:2024-02-22 修回日期:2024-04-25 接受日期:2024-06-13 出版日期:2024-06-26 发布日期:2024-06-25
  • 通讯作者: 张皓 E-mail:hao.zhang.zhr@gmail.com;hao.zhang.zhr@csu.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(XDA30010200)

Stationkeeping strategies for close formation flight on distant retrograde orbits

Haiyue AO1,2, Chihang YANG3, Yu SHI1, Hao ZHANG1,2()   

  1. 1.Technology and Engineering Center for Space Utilization,Chinese Academy of Sciences,Beijing 100094,China
    2.School of Aerospace Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
    3.Beijing Institute of Control Engineering,Beijing 100094,China
  • Received:2024-02-22 Revised:2024-04-25 Accepted:2024-06-13 Online:2024-06-26 Published:2024-06-25
  • Contact: Hao ZHANG E-mail:hao.zhang.zhr@gmail.com;hao.zhang.zhr@csu.ac.cn
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDA30010200)

摘要:

远距离逆行轨道(DRO)是地月空间中一族大尺度、绕月逆行的周期轨道,由于具有长期稳定和低能转移的优势,其已成为许多地月空间任务的潜在轨道。研究DRO上的近距离编队技术对于地月空间在轨服务等任务具有重要意义。由于导航误差和控制误差的存在,因此有必要研究DRO近距离相对运动的误差演化,并进行轨道保持策略的设计。首先,介绍了通过Floquet分解得到的DRO线性化相对运动的基础解集。然后,针对以周期解为基础的伴飞编队,分别采用柯西-格林张量和无迹变换对DRO伴飞编队进行了敏感性和安全性的分析,基于这些分析并且考虑工程约束,发现机动频率为每个周期2次且机动位置位于2个近月点处是较优的轨道保持方案。之后,分别基于相对轨迹跟踪和绝对相位偏置的思想给出了两种轨道保持算法。仿真结果显示,2种算法都能保证DRO近距离编队保持长期的安全性以及合理的构型。

关键词: 远距离逆行轨道(DRO), 圆型限制性三体问题, 相对运动, 误差演化, 轨道保持

Abstract:

Distant Retrograde Orbit (DRO) is a family of large-scale, lunar-retrograde periodic orbits in the cislunar space. Due to its advantages of long-term stability and low-energy transfer, DRO has become a potential orbit for many cislunar space missions. Investigating close formation techniques on DRO is of great significance for cislunar on-orbit servicing. Considering navigation and execution errors, it is essential to study the uncertainty propagation of close relative motion on DRO and design stationkeeping strategies. The fundamental solution set of linearized relative motion on DRO obtained through the Floquet theory is introduced. Based on periodic solutions, analyses of sensitivity and safety uncertainty propagation of DRO formation flight are conducted using the Cauchy-Green tensor and unscented transformation, respectively. Based on these analyses and considering engineering constraints, it is found that keeping the maneuver frequency of 2 times per cycle and the maneuver locations at two perilunes is the near-optimal stationkeeping scheme. Following this, two stationkeeping algorithms are proposed based on the concepts of relative trajectory following and absolute phase bias. The simulation results show that both stationkeeping algorithms can ensure long-term safety and reasonable configuration of DRO close formation flight.

Key words: distant retrograde orbit (DRO), circular restricted three-body problem, relative motion, uncertainty propagation, station keeping

中图分类号: