1 |
张洪波, 郑伟, 汤国建. 采用打靶法设计考虑地球扁率的机动轨道[J]. 宇航学报, 2008, 29(4): 1177-1181.
|
|
ZHANG H B, ZHENG W, TANG G J. Maneuver trajectory design with J2Correction based on shooting procedure[J]. Journal of Astronautics, 2008, 29(4): 1177-1181 (in Chinese).
|
2 |
冯浩阳, 汪雪川, 岳晓奎, 王昌涛. 航天器轨道递推及Lambert 问题计算方法综述[J]. 航空学报, 2023, 44(13): 028027.
|
|
FENG H Y, WANG X C, YUE X K, et al. A survey of computational methods for spacecraft orbit propagation and Lambert problems[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 028027 (in Chinese).
|
3 |
KELLER H B. Numerical solution of two point boundary value problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976: 15-19.
|
4 |
LEE E S. Quasilinearization and invariant imbedding, with applications to chemical engineering and adaptive control[M]. New York: Academic Press, 1968:30-35.
|
5 |
REINHARDT H J. Analysis of approximation methods for differential and integral equations[M]. New York: Springer New York, 1985:10-15.
|
6 |
YANG Z, LUO Y Z, ZHANG J, et al. Homotopic perturbed lambert algorithm for long-duration rendezvous optimization[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(11): 2215-2223.
|
7 |
CHARTIER P, PHILIPPE B. A parallel shooting technique for solving dissipative ODE’s[J]. Computing, 1993, 51(3): 209-236.
|
8 |
伍佩钰. 非线性方程组的非精确Broyden方法[D]. 长沙: 长沙理工大学, 2017: 1-10.
|
|
WU P Y. Inexact Broyden method for nonlinear equations[D]. Changsha: Changsha University of Science & Technology, 2017: 1-10. (in Chinese).
|
9 |
张雷, 曾蓉, 陈聆. 非线性最优控制计算方法及其应用[M]. 北京: 科学出版社, 2015: 116-128.
|
|
ZHANG L, ZENG R, CHEN L. Calculation method of nonlinear optimal control and its application[M]. Beijing: Science Press, 2015: 116-128 (in Chinese).
|
10 |
彭坤, 彭睿, 黄震 等. 求解最优月球软着陆的隐式打靶法[J]. 宇航学报, 2019, 40(7): 322-641.
|
|
PENG K, PENG R, HUANG Z, et al. Implicit shooting method to solve optimal lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322-641 (in Chinese).
|
11 |
崔文豪. J2摄动下的卫星编队队形重构与队形保持方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 27-34.
|
|
CUI W H. Research on formation reconstruction and formation maintenance of satellite formation under J2 perturbation[D].Harbin: Harbin Engineering University, 2019: 27-34. (in Chinese).
|
12 |
FITZGERALD R M. Counting lambert’s problem solutions in the circular-restricted three-body problem: AIAA-2024-0204[R]. Reston: AIAA, 2024.
|
13 |
张哲, 代洪华, 冯浩阳, 等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法[J]. 力学学报, 2022, 54(2): 503-516.
|
|
ZHANG Z, DAI H H, FENG H Y, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point boundary-value constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516 (in Chinese).
|
14 |
冯浩阳, 岳晓奎, 汪雪川. 大范围收敛的摄动Lambert问题新型解法: 拟线性化-局部变分迭代法[J]. 航空学报, 2021, 42(11): 524699.
|
|
FENG H Y, YUE X K, WANG X C. A novel quasi linearization-local variational iteration method with large convergence domain for solving perturbed Lambert’s problem[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524699 (in Chinese).
|
15 |
WAWRZYNIAK G G, HOWELL K C. Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods[J]. International Journal of Aerospace Engineering, 2011, 2011: 476197.
|
16 |
WATSON L T. Globally convergent homotopy algorithms for nonlinear systems of equations[J]. Nonlinear Dynamics, 1990, 1(2): 143-191.
|
17 |
LIU C S, YEIH W, KUO C L, et al. A scalar homotopy method for solving an Over/Under-determined system of non-linear algebraic equations[J]. CMES-Computer Modeling in Engineering and Sciences, 2009, 53(1): 47-71.
|
18 |
ARMELLIN R, GONDELACH D, JUAN J F SAN. Multiple revolution perturbed lambert problem solvers[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(9): 2019-2032.
|
19 |
郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京: 清华大学, 2012: 20-21.
|
|
GUO T D. Research on indirect method and pseudo-spectral method for small thrust trajectory optimization in deep space exploration[D].Beijing: Tsinghua University, 2012: 20-21. (in Chinese).
|
20 |
PAN X, PAN B F. Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem[J]. IEEE Access, 2020, 8: 47845-47862.
|
21 |
潘迅, 泮斌峰. 基于同伦方法三体问题小推力推进转移轨道设计[J]. 深空探测学报, 2017, 4(3): 270-275.
|
|
PAN X, PAN B F. Optimization of low-thrust transfers using homotopic method in the restricted three-body problem[J]. Journal of Deep Space Exploration, 2017, 4(3): 270-275 (in Chinese).
|
22 |
HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
|
23 |
杨震, 罗亚中, 张进 等. 基于状态转移张量的非线性轨道偏差演化分析方法[C]∥中国非线性动力学与运动稳定性大会. 南京: 中国振动工程会, 2015.
|
|
YANG Z, LUO Y Z, ZHANG J. Nonlinear orbit deviation evolution analysis method based on state transition tensor[C]∥China Conference on nonlinear Dynamics and Motion Stability. Nanjing: Chinese Society for Vibration Engineering, 2015 (in Chinese).
|
24 |
VINTI J P. Orbital and Celestial Mechanics[M]. Reston,: AIAA, 1998: 100-105.
|
25 |
赵育善, 师鹏, 张晨. 深空飞行动力学[M]. 北京: 中国宇航出版社, 2016: 155-165.
|
|
ZHAO Y S, SHI P, ZHANG C. Deep space flight dynamics[M]. Beijing: Chinese Astronautic Press, 2016: 155-165 (in Chinese).
|