航空学报 > 2014, Vol. 35 Issue (9): 2438-2450   doi: 10.7527/S1000-6893.2014.0022

高速压气机叶栅旋涡结构及其流动损失研究

张海灯1,2, 吴云1,2, 李应红1, 赵勤1   

  1. 1. 空军工程大学 航空航天工程学院, 陕西 西安 710038;
    2. 西安交通大学 航空航天学院, 陕西 西安 710091
  • 收稿日期:2013-11-07 修回日期:2014-03-13 出版日期:2014-09-25 发布日期:2014-09-17
  • 通讯作者: 吴云,Tel.:029-84787527 E-mail:wuyun1223@126.com E-mail:wuyun1223@126.com
  • 作者简介:张海灯 男,博士研究生。主要研究方向:轴流压气机内部流动结构及其等离子体流动控制。E-mail:zhanghaideng@126.com;吴云 男,博士,副教授,博士生导师。主要研究方向:等离子体流动控制。Tel:029-84787527 E-mail:wuyun1223@126.com
  • 基金资助:

    国家自然科学基金(50906100,51336011);高等学校全国优秀博士学位论文作者专项资金(201172);陕西省科学技术研究发展计划(2013KJXX-83)

Investigation of Vortex Structure and Flow Loss in a High-speed Compressor Cascade

ZHANG Haideng1,2, WU Yun1,2, LI Yinghong1, ZHAO Qin1   

  1. 1. College of Aeronautics and Astronautics Engineering, Airforce Engineering University, Xi'an 710038, China;
    2. College of Aeronautics and Astronautics, Xi'an Jiao Tong University, Xi'an 710091, China
  • Received:2013-11-07 Revised:2014-03-13 Online:2014-09-25 Published:2014-09-17
  • Supported by:

    National Natural Science Foundation of China (50906100,51336011); Special Fund for Author of National University Excellent Doctoral Dissertation (201172); Science and Technology Development Program of Shaanxi Province (2013KJXX-83)

摘要:

为揭示高亚声速来流条件下压气机叶栅内部流动特性,对高速压气机叶栅通道内旋涡结构和流动损失的产生与演变规律进行研究。首先建立了数值仿真模型并用实验验证,然后详细研究了叶栅通道内主要旋涡结构、拓扑规律和旋涡模型,最后分析了叶栅通道内流动损失与旋涡结构的内在联系。高速压气机叶栅通道内主要存在马蹄涡、端壁展向涡、通道涡、壁角涡、壁面涡、集中脱落涡和尾缘脱落涡7个集中涡系,通道涡由端壁来流附面层中发展而来,是角区复杂旋涡结构的主要诱因;攻角由0°增大为4°,通道涡的涡核更早地脱落端壁附面层向角区发展,但对角区流动的影响减弱,叶片尾缘未形成明显的集中脱落涡。伴随着集中脱落涡的消失,叶栅固壁面拓扑结构中,叶片尾缘吸力面上没有出现与集中脱落涡对应的分离螺旋点,并且与叶中脱落涡层相对应的分离线和再附线消失,尾缘脱落涡仅包含近端区的一个分支。由总压损失沿流向和展向的变化规律,叶栅通道流动损失主要来源于角区复杂旋涡结构引起的强剪切作用,近端壁区的总压损失与角区主要涡系结构的生成和发展密切相关;攻角由0°增大至4°,角区旋涡的影响能力变弱,近端区流动损失减小,与叶中部位总压损失的差异缩小。

关键词: 高速压气机叶栅, 轴向涡量, 拓扑规律, 旋涡结构, 流动损失

Abstract:

In order to find out the internal flow characteristics of compressor cascade in high subsonic flow, research on the occurrence and development of high-speed compressor cascade vortex structures and flow loss are established. Firstly, the simulation model is erected and verified with experimental results; secondly, the main vortex structures, topological patterns and vortex models in the cascade passage are researched in detail; in the end, the relationship between flow loss and vortex structures is analyzed. Seven main vortex structures including horseshoe vortex, endwall span vortex, passage vortex, corner vortex, wall vortex, concentrated shedding vortex and trailing edge shedding vortex are observed in high-speed compressor cascade passage, and passage vortex which originates from the inlet endwall boundary layer is the main reason for the complicated vortex structures. As the angle of attack increases from 0° to 4°, although passage vortex vortex core separates earlier from the corner boundary layer, influences of passage vortex on the passage flow are weakened and concentrated shedding vortex at the trailing edge disappears. According to the cascade topological structure, with the disappearance of concentrated shedding vortex, spiral point corresponding to concentrated shedding vortex on suction surface disappears and the attachment line and separation line at trailing edge corresponding to midspan trailing edge shedding vortex are vanished, indicating that trailing edge shedding vortex only exists near endwall. According to the variance law of totalpressure loss coefficient in streamwise and spanwise direction, cascade passage flow loss is mainly attributed to strong sheering action caused by the complicated corner vortex structures, and the totalpressure loss near endwall is closely related to the occurrence and development of the main corner vortex structures; with the increase of angle of attack from 0° to 4°, however, influences of corner vortex structures are weakened, and the gap between totalpressure loss near endwall and midspan are narrowed as a result of the decrease of flow loss near endwall.

Key words: high-speed compressor cascade, axial vorticity, topological rule, vortex structure, flow loss

中图分类号: