1 |
HUANG W, RONG W, LIU D H, et al. Design and realization of recovery system of Chang’e-5 reentry spacecraft[J]. Space Science & Technology, 2021(1): 133-142.
|
2 |
HUANG X Y, LI M D, WANG X L, et al. The Tianwen-1 guidance, navigation, and control for Mars entry, descent, and landing[J]. Space Science & Technology, 2021, 2021(4): 1-13.
|
3 |
LI J F, WANG Y B, LIU Z Y, et al. A new recursive composite adaptive controller for robot manipulators[J]. Space Science & Technology, 2021(1): 77-83.
|
4 |
马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6): 321763.
|
|
MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 321763 (in Chinese).
|
5 |
SCHAUB H, AKELLA M R, JUNKINS J L. Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 95-100.
|
6 |
XIAO B, CAO L, RAN D C. Attitude exponential stabilization control of rigid bodies via disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(5): 2751-2759.
|
7 |
CRASSIDIS J L, MARKLEY F L. Sliding mode control using modified Rodrigues parameters[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1381-1383.
|
8 |
朱庆华, 董瑞琦, 马广富. 基于动态滑模控制的挠性航天器姿态控制[J]. 控制理论与应用, 2018, 35(10): 1430-1435.
|
|
ZHU Q H, DONG R Q, MA G F. Dynamical sliding mode for flexible spacecraft attitude control[J]. Control Theory & Applications, 2018, 35(10): 1430-1435 (in Chinese).
|
9 |
KRSTIC M, TSIOTRAS P. Inverse optimal stabilization of a rigid spacecraft[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049.
|
10 |
SHARMA R, TEWARI A. Optimal nonlinear tracking of spacecraft attitude maneuvers[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5): 677-682.
|
11 |
张士峰, 钱山, 李鹏奎. 刚体航天器的最小能量姿态机动最优控制研究[J]. 宇航学报, 2009, 30(4): 1504-1509, 1515.
|
|
ZHANG S F, QIAN S, LI P K. Study on the minimal energy maneuvering control of a rigid spacecraft with momentum transfer[J]. Journal of Astronautics, 2009, 30(4): 1504-1509, 1515 (in Chinese).
|
12 |
WANG D, LIU D R, LI H L. Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 627-632.
|
13 |
WERBOS P J. Consistency of HDP applied to a simple reinforcement learning problem[J]. Neural Networks, 1990, 3(2): 179-189.
|
14 |
FAN Q, YANG G. Adaptive fault-tolerant control for affine non-linear systems based on approximate dynamic programming[J]. IET Control Theory and Ap-plications, 2016, 10(6): 655-663.
|
15 |
LEWIS F L, LIU D R. Reinforcement learning and approximate dynamic programming for feedback control[M]. Hoboken, Wiley, 2012, 4-10.
|
16 |
JIANG Y, JIANG Z P. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(5): 882-893.
|
17 |
DONG H Y, ZHAO X W, YANG H Y. Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1664-1673.
|
18 |
梁小辉, 胡昌华, 周志杰, 等. 基于自适应动态规划的运载火箭智能姿态容错控制[J]. 航空学报, 2021, 42(4): 524915.
|
|
LIANG X H, HU C H, ZHOU Z J, et al. ADP-based intelligent attitude fault-tolerant control for launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524915 (in Chinese).
|
19 |
JIANG Y, JIANG Z P. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics[J]. Automatica, 2012, 48(10): 2699-2704.
|
20 |
VAMVOUDAKIS K G, LEWIS F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica, 2010, 46(5): 878-888.
|
21 |
WEN G X, GE S S, PHILIP CHEN C L, et al. Adaptive tracking control of surface vessel using optimized backstepping technique[J]. IEEE Transactions on Cybernetics, 2019, 49(9): 3420-3431.
|
22 |
HU Q L, YANG H Y, DONG H Y, et al. Learning-based 6-DOF control for autonomous proximity operations under motion constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4097-4109.
|
23 |
NA J, WANG B, LI G, et al. Nonlinear constrained optimal control of wave energy converters with adaptive dynamic programming[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7904-7915.
|
24 |
LIU D R, WANG D, WANG F Y, et al. Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2834-2847.
|
25 |
ZHAO J, NA J, GAO G B. Robust tracking control of uncertain nonlinear systems with adaptive dynamic programming[J]. Neurocomputing, 2022, 471: 21-30.
|
26 |
SUN J L, LIU C S. Disturbance observer-based robust missile autopilot design with full-state constraints via adaptive dynamic programming[J]. Journal of the Franklin Institute, 2018, 355(5): 2344-2368.
|
27 |
FAN Q Y, YANG G H. Adaptive actor–critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 165-177.
|
28 |
ZHAO B, SHI G, WANG D. Asymptotically stable critic designs for approximate optimal stabilization of nonlinear systems subject to mismatched external disturbances[J]. Neurocomputing, 2020, 396: 201-208.
|
29 |
DONG H Y, ZHAO X W, HU Q, et al. Learning-based attitude tracking control with high-performance parameter estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58: 2218-2230.
|
30 |
YANG H Y, HU Q, DONG H Y, et al. ADP-based spacecraft attitude control under actuator misalignment and pointing constraints[J]. IEEE Transactions on Industrial Electronics, 2022, 69: 9342-9352.
|
31 |
RAN M P, LI J C, XIE L H. Reinforcement-learning-based disturbance rejection control for uncertain nonlinear systems[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9621-9633.
|
32 |
BHASIN S, KAMALAPURKAR R, JOHNSON M, et al. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica, 2013, 49(1): 82-92.
|
33 |
ABU-KHALAF M, LEWIS F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach[J]. Automatica, 2005, 41(5): 779-791.
|
34 |
SONG R Z, LEWIS F L, WEI Q L, et al. Off-policy actor-critic structure for optimal control of unknown systems with disturbances[J]. IEEE Transactions on Cybernetics, 2016, 46(5): 1041-1050.
|
35 |
POLYCARPOU M M, IOANNOU P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427.
|
36 |
张国山, 胡伟, 郝君. 基于离策略和扰动补偿的未知非线性系统最优控制[J]. 吉林大学学报(工学版), 2022, 52(5): 1145-1152.
|
|
ZHANG G S, HU W, HAO J. Optimal control for unknown nonlinear systems based on off-policy and disturbance compensation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5): 1145-1152 (in Chinese).
|