1 |
REN J R, QUAN Q, LIU C J, et al. Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method[J]. Chinese Journal of Aeronautics, 2020, 33(3): 1016-1025.
|
2 |
张国斌, 张青斌, 丰志伟, 等. 软式空中加油对接约束力不确定性分析[J]. 航空学报, 2021, 42(9): 224517.
|
|
ZHANG G B, ZHANG Q B, FENG Z W, et al. Uncertainty analysis on binding force of hose-drogue aerial refueling[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224517 (in Chinese).
|
3 |
吴慈航, 闫建国, 钱先云, 等. 受油机指定时间姿态稳定控制[J]. 航空学报, 2022, 43(2): 324996.
|
|
WU C H, YAN J G, QIAN X Y, et al. Predefined-time attitude stabilization control of receiver aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 324996 (in Chinese).
|
4 |
邹泉, 华艺欣, 邵翥, 等.自主空中加油能力需求及关键评价指标分析[J/OL].系统仿真学报:1-11 [2023-01-02]. DOI: 10.16182/j.issn1004731x.joss.22-0655 .
|
|
ZOU Q, HUA Y X, SHAO Z, et al. Analysis of capability requirements and key evaluation indicators for autonomous air refueling[J/OL]. Journal of System Simulation: 1-11[2023-01-02]. DOI:10.16182/j.issn1004731x.joss.22-0655 (in Chinese).
|
5 |
唐崇武, 汪刚志, 张飞飞. 面向自主空中加油的锥套识别与测量算法研究[J]. 电子测量技术, 2022, 45(1): 111-116.
|
|
TANG C W, WANG G Z, ZHANG F F. Drogue detection and position measurement algorithm research for autonomous aerial refueling[J]. Electronic Measurement Technology, 2022, 45(1): 111-116 (in Chinese).
|
6 |
GARCIA J A B, YOUNES A B. Real-time navigation for drogue-type autonomous aerial refueling using vision-based deep learning detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2225-2246.
|
7 |
LEE A, DALLMANN W, NYKL S, et al. Long-range pose estimation for aerial refueling approaches using deep neural networks[J]. Journal of Aerospace Information Systems, 2020, 17(11): 634-646.
|
8 |
CHOI A J, YANG H H, HAN J H. Study on robust aerial docking mechanism with deep learning based drogue detection and docking[J]. Mechanical Systems and Signal Processing, 2021, 154: 107579.
|
9 |
王宏伦, 阮文阳, 王延祥, 等. 基于可变视场角的空中加油锥套位姿精确测量方法[J]. 战术导弹技术, 2020(4): 135-143.
|
|
WANG H L, RUAN W Y, WANG Y X, et al. Accurate measurement of refueling drogue pose based on variable field angle[J]. Tactical Missile Technology, 2020(4): 135-143 (in Chinese).
|
10 |
XU X B, DUAN H B, GUO Y J, et al. A cascade adaboost and CNN algorithm for drogue detection in UAV autonomous aerial refueling[J]. Neurocomputing, 2020, 408: 121-134.
|
11 |
BORJI A, CHENG M M, HOU Q B, et al. Salient object detection: A survey[J]. Computational Visual Media, 2019, 5(2): 117-150.
|
12 |
段海滨, 张奇夫, 范彦铭, 等. 基于计算机视觉的UAV自主空中加油半物理仿真[J]. 北京航空航天大学学报, 2013, 39(11): 1491-1496.
|
|
DUAN H B, ZHANG Q F, FAN Y M, et al. Hardware-in-loop simulation platform for UAV autonomous aerial refueling based on computer vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1491-1496 (in Chinese).
|
13 |
段海滨, 张奇夫, 邓亦敏, 等. 基于仿鹰眼视觉的无人机自主空中加油[J]. 仪器仪表学报, 2014, 35(7): 1450-1458.
|
|
DUAN H B, ZHANG Q F, DENG Y M, et al. Biologically eagle-eye-based autonomous aerial refueling for unmanned aerial vehicles[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1450-1458 (in Chinese).
|
14 |
ZHU W J, LIANG S, WEI Y C, et al. Saliency optimization from robust background detection[C]∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 2814-2821.
|
15 |
孙永斌. 基于仿生智能的无人机软式自主空中加油技术研究[D]. 北京: 北京航空航天大学, 2021: 5-21.
|
|
SUN Y B. UAV probe-and-drogue autonomous aerial refueling techniques based on bionic intelligence [D]. Beijing: Beihang University, 2021: 5-21 (in Chinese).
|
16 |
段海滨, 邓亦敏, 王晓华. 仿鹰眼视觉及应用[M] . 北京: 科学出版社, 2021: 1-17.
|
|
DUAN H B, DENG Y M, WANG X H. Biological eagle-eye vision and its applications [M]. Beijing: Science Press, 2021: 1-17 (in Chinese).
|
17 |
GUZMAN-PANDO A, CHACON-MURGUIA M I. DeepFoveaNet: Deep fovea eagle-eye bioinspired model to detect moving objects[J]. IEEE Transactions on Image Processing, 2021, 30: 7090-7100.
|
18 |
LI X, DUAN H B, LI J C, et al. Biological eagle eye-based method for change detection in water scenes[J]. Pattern Recognition, 2022, 122: 108203.
|
19 |
GOLDSMITH T H. Optimization, constraint, and history in the evolution of eyes[J]. The Quarterly Review of Biology, 1990, 65(3): 281-322.
|
20 |
KEMP D J, HERBERSTEIN M E, FLEISHMAN L J, et al. An integrative framework for the appraisal of coloration in nature[J]. The American Naturalist, 2015, 185(6): 705-724.
|
21 |
OLSSON P. Colour vision in birds: Comparing behavioral thresholds and model predictions[D]. Lund: Lund University, 2016.
|
22 |
MITKUS M, POTIER S, MARTIN G R, et al. Raptor vision[M]∥The Oxford Research Encyclopedia of Neuroscience, 2018.
|
23 |
BADEN T, EULER T, BERENS P. Understanding the retinal basis of vision across species[J]. Nature Reviews Neuroscience, 2020, 21(1): 5-20.
|
24 |
YUAN B H, HAN L X, YAN H. Explore double-opponency and skin color for saliency detection[J]. Neurocomputing, 2021, 425: 219-230.
|
25 |
BECKWITH-COHEN B, HOROWITZ I, BDOLAH-ABRAM T, et al. Differences in ocular parameters between diurnal and nocturnal raptors[J]. Veterinary Ophthalmology, 2015, 18: 98-105.
|
26 |
POTIER S, MITKUS M, KELBER A. Visual adaptations of diurnal and nocturnal raptors[J]. Seminars in Cell & Developmental Biology, 2020, 106: 116-126.
|
27 |
MYSORE S P, KNUDSEN E I. Descending control of neural bias and selectivity in a spatial attention network: Rules and mechanisms[J]. Neuron, 2014, 84(1): 214-226.
|
28 |
KNUDSEN E I. Control from below: The role of a midbrain network in spatial attention[J]. European Journal of Neuroscience, 2011, 33(11): 1961-1972.
|
29 |
GODDARD C A, SRIDHARAN D, HUGUENARD J R, et al. Gamma oscillations are generated locally in an attention-related midbrain network[J]. Neuron, 2012, 73(3): 567-580.
|
30 |
GODDARD C A, HUGUENARD J, KNUDSEN E. Parallel midbrain microcircuits perform independent temporal transformations[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2014, 34(24): 8130-8138.
|
31 |
ASADOLLAHI A, KNUDSEN E I. Spatially precise visual gain control mediated by a cholinergic circuit in the midbrain attention network[J]. Nature Communications, 2016, 7: 13472.
|
32 |
KNUDSEN E I, SCHWARZ J S, KNUDSEN P F, et al. Space-specific deficits in visual orientation discrimination caused by lesions in the midbrain stimulus selection network[J]. Current Biology, 2017, 27(14): 2053-2064.e5.
|
33 |
GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.
|
34 |
ZHANG J M, SCLAROFF S. Exploiting surroundedness for saliency detection: A Boolean map approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 889-902.
|
35 |
王晓华. 基于仿鹰眼-脑机制的小目标识别技术研究[D]. 北京: 北京航空航天大学, 2018: 11-23.
|
|
WANG X H. Research on small target recognition based on eagle eye-brain mechanisms[D]. Beijing: Beihang University, 2018: 11-23 (in Chinese).
|
36 |
WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 3796-3805.
|
37 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
38 |
HOU X D, ZHANG L Q. Saliency detection: a spectral residual approach[C]∥2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2007: 1-8.
|
39 |
ZHANG L H, YANG C, LU H C, et al. Ranking saliency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1892-1904.
|