[1] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安:西北工业大学出版社, 2005:346-387. LIAN X C, WU H. Aeroengine principle[M]. Xi'an:Northwestern Polytechnical University Press, 2005:346-387(in Chinese). [2] 王云. 航空发动机原理[M]. 北京:北京航空航天大学出版社, 2009:85-99. WANG Y. Aeroengine principle[M]. Beijing:Beihang University Press, 2009:85-99(in Chinese). [3] 黄爱华. 涡扇发动机可调静子叶片控制规律研究[J]. 燃气涡轮试验与研究, 2017, 30(1):48-51. HUANG A H. Control law of variable stator vane for turbofan engine[J]. Gas Turbine Experiment and Research, 2017, 30(1):48-51(in Chinese). [4] WIRKOWSKI P. Influence of changes of axial compressor variable stator vanes setting on gas turbine engine work[J]. Journal of Pilish Cimac, 2007, 2(2):511-517. [5] RIESLAND D. Aircraft engine analysis using ADAMS[R]. 2000. [6] 李世林. VSV系统对CFM56发动机喘振的影响分析[J]. 科学技术与工程, 2011, 11(20):4934-4936. LI S L. Research on VSV faults based CFM56 engine surge[J]. Science Technology and Engineering, 2011, 11(20):4934-4936(in Chinese). [7] 杨伟, 罗秋生, 张少平,等. 基于UG和ADAMS的调节机构虚拟样机动力学仿真[J]. 燃气涡轮试验与研究, 2009, 22(2):22-25. YANG W, LUO Q S, ZHANG S P, et al. Dynamics simulation of compressor's adjusting mechanism virtual prototyping based on UG&ADAMS[J]. Gas Turbine Experiment and Research, 2009, 22(2):22-25(in Chinese). [8] 杨伟, 徐伟. ADAMS参数化分析在高压压气机调节机构设计中的初步应用[J]. 燃气涡轮试验与研究, 2012, 25(4):20-24. YANG W, XU W. Preliminary application of parameterized analysis based on ADAMS in VSV's adjusting mechanism design of high pressure compressor[J].Gas Turbine Experiment and Research, 2012, 25(4):20-24(in Chinese). [9] 张晓宁, 赵雷, 杨勇刚. 联调机构虚拟样机运动学动力学仿真[J]. 航空发动机, 2014, 40(4):56-60. ZHANG X N, ZHAO L, YANG Y G. Kinematics and dynamics simulation of jointly adjusting mechanism based on virtual prototype technology[J]. Aeroengine, 2014, 40(4):56-60(in Chinese). [10] 杨勇刚, 张力. 几种摇臂与联动环连接结构对比分析[J]. 航空发动机, 2012, 38(6):34-37. YANG Y G, ZHANG L. Contrast analysis of several rocker and drive ring connecting structure[J]. Aeroengine, 2012, 38(6):34-37(in Chinese). [11] 闫晓攀. 摇臂变形对导叶角度迟滞的影响分析[C]//第十五届中国科协年会第13分会场:航空发动机设计、制造与应用技术研讨会论文集. 北京:中国科学技术协会学会学术部, 2013:5-11. YAN X P. Analysis of the influence on vanes' angle of the lever deformation[C]//Section 13 of the 15th China Association for Science and Technology Annual Conference:Proceedings of the Symposium on Aero Engine Design, Manufacturing and Application Technology. Beijing:Academic department of Chinese Association of Science and Technology, 2013:5-11(in Chinese). [12] 胡明, 郑龙席. 基于CATIA和ADAMS的单级可调静子叶片系统仿真分析[J]. 航空制造技术, 2014(8):98-101. HU M, ZHENG L X. Simulation analysis of single-stage variable stator vane system based on CATIA and ADAMS[J]. Aeronautical Manufacturing Technology, 2014(8):98-101(in Chinese). [13] 梁爽, 印雪梅, 王华. 基于ADAMS的静叶联调机构参数化设计[J]. 航空发动机, 2016, 42(1):65-69. LIANG S, YIN X M, WANG H. Parametric design of stator blade jointly adjusting mechanism based on ADAMS[J]. Aeroengine, 2016, 42(1):65-69(in Chinese). [14] HENSGES M. Simulation and optimization of an adjustable inlet guide vane for industrial turbo compressors[R]. 2008. [15] 胡文杰. 发动机多级联调机构动力学特性分析[D].天津:中国民航大学, 2015:16-43. HU W J. The dynamic analysis on multi-stage combine regulation mechanism of aero-engine[D]. Tianjin:Civil Aviation University of China, 2015:16-43(in Chinese). [16] 张帅. VSV调节机构运动特性的分析方法研究[D].南京:南京航空航天大学, 2015:18-44. ZHANG S. Study on the analysis method of motion characteristics of VSV regulating mechanism[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:18-44(in Chinese). [17] 张少平, 杨川, 张一彬. 压气机静叶调节机构的柔性多体建模及仿真[J]. 燃气涡轮试验与研究, 2018,31(4):12-18. ZHANG S P, YANG C, ZHANG Y B. Modeling and simulation of the adjusting mechanism of stators through flexible multibody approach[J]. Gas Turbine Experiment and Research, 2018, 31(4):12-18(in Chinese). [18] SHABANA A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J].Multibody System Dynamics, 1997, 1(3):339-348. [19] SHABANA A A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics[J]. Nonlinear Dynamics, 1998, 16(3):293-306. [20] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[R]. Chicago:Department of Mechanical and Industrial Engineering, 1996. [21] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉:华中科技大学, 2009:16-90. TIAN Q. A dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in engineering[D]. Wuhan:Huazhong University of Science and Technology, 2009:16-90(in Chinese). [22] 张越, 魏承, 赵阳, 等. 基于ANCF的松弛绳索动力学建模与仿真[J]. 航空学报, 2017, 38(4):162-170. ZHANG Y, WEI C, ZHAO Y, et al. Dynamic modeling and simulation of slack rope based on ANCF[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):162-170(in Chinese). [23] 陈萌. 基于虚拟样机的接触碰撞动力学仿真研究[D].武汉:华中科技大学, 2003:44-57. CHEN M. Simulation of contact collision dynamics based on virtual prototype[D]. Wuhan:Huazhong University of Science and Technology, 2003:44-57(in Chinese). |