[1] LIM Y, GARDI A, SABATINI R, et al. Avionics human-machine interfaces and interactions for manned and unmanned aircraft[J]. Progress in Aerospace Sciences, 2018, 102:1-46. [2] D'INTINO G, OLIVARI M, BVLTHOFF H H, et al. Haptic assistance for helicopter control based on pilot intent estimation[J]. Journal of Aerospace Information Systems, 2020, 17(4):193-203. [3] ZIKMUND P, HORPATZKÁ M, DUBNICKY L, et al. Pilot-aircraft haptic feedback tests[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(9):1407-1412. [4] GIBSON J C, HESS R A. Stick and feel system design[R]. Neuilly Sur Seine:AGARD, 1997:34-36. [5] MITCHELL D G, APONSO B L, KLYDE D H. Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics:NASA-CR-4443[R]. Washington, D.C.:NASA, 1992. [6] GREENFIELD A, SAHASRABUDHE V. Side-stick force-feel parametric study of a cargo-class helicopter[C]//American Helicopter Society 67th Annual Forum,2011. [7] HEGG J W, SMITH M P, YOUNT L. Sidestick controllers for advanced aircraft cockpits[C]//Proceedings IEEE/AIAA 11th Digital Avionics Systems Conference. Piscataway:IEEE Press, 1992:491-499. [8] 李玉风, 王延刚, 屈香菊. 主动侧杆操纵的人机特性评价方法[J]. 飞行力学, 2008, 26(6):9-13. LI Y F, WANG Y G, QU X J. Method of the human-machine characteristic evaluation for the control of active side stick[J]. Flight Dynamics, 2008, 26(6):9-13(in Chinese). [9] 许舒婷, 谭文倩, 孙立国, 等. 主动侧杆引导下的Ⅱ型驾驶员诱发振荡抑制[J]. 航空学报, 2018, 39(8):121861. XU S T, TAN W Q, SUN L G, et al. Using active side-stick to prevent category Ⅱ pilot-induced oscillations[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):121861(in Chinese). [10] TAN W Q, ZHANG W, QU X J. Analysis of APC characteristics of control mode switching induced by active side stick[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2012 [11] FU W, VAN PAASSEN M M, MULDER M. Developing active manipulators in aircraft flight control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(8):1755-1767. [12] KLYDE D H, MCRUER D. Smart-cue and smart-gain concepts to alleviate loss of control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1409-1417. [13] VAN BAELEN D, ELLERBROEK J,VAN PAASSEN M M, et al. Design of a haptic feedback system for flight envelope protection[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(4):700-714. [14] FELLAH K, GUIATNI M. Tactile display design for flight envelope protection and situational awareness[J]. IEEE Transactions on Haptics, 2019, 12(1):87-98. [15] FU W, VAN PAASSEN M M, MULDER M. Human threshold model for perceiving changes in system dynamics[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(5):444-453. [16] ACKERMAN K A, TALLEUR D A, CARBONARI R S, et al. Automation situation awareness display for a flight envelope protection system[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4):964-980. [17] 许舒婷. 带智能操纵杆的人机系统建模及评价方法研究[D].北京:北京航空航天大学, 2019:35-37. XU S T. Modeling and evaluating the human-pilot aircraft system with smart inceptor[D]. Beijing:Beihang University, 2019:35-37(in Chinese). [18] XU S T, TAN W Q, QU X J. Modeling human pilot behavior for aircraft with a smart inceptor[J]. IEEE Transactions on Human-Machine Systems, 2019, 49(6):661-671. [19] KLYDE D H, LAMPTON A K, RICHARDS N D, et al. Flight-test evaluation of a loss-of-control mitigation system[J]. Journal of Guidance, Control, and Dynamics, 2015, 40(4):981-997. [20] STEPANYAN V, KRISHNAKUMAR K, DORAIS G, et al. Loss-of-control mitigation via predictive cuing[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(4):831-846. [21] BELCASTRO C M, FOSTER J V, SHAH G H, et al. Aircraft loss of control problem analysis and research toward a holistic solution[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4):733-775. [22] BACHELDER E N, HESS R A, GODFROY-COOPER M, et al. Linking the pilot structural model and pilot workload[C]//2018 AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018 [23] XU S T, TAN W Q, EFREMOV A V, et al. Review of control models for human pilot behavior[J]. Annual Reviews in Control, 2017, 44:274-291. [24] GAWTHROP P, LORAM I, LAKIE M, et al. Intermittent control:a computational theory of human control[J]. Biological Cybernetics, 2011, 104(1-2):31-51. [25] HANDLEY P M, HESS R A, ROBINSON S K. Descriptive pilot model for the NASA simplified aid for extravehicular activity rescue[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(2):515-518. [26] HOSMAN R, ADVANI S. Design and evaluation of the objective motion cueing test and criterion[J]. The Aeronautical Journal, 2016, 120(1227):873-891. [27] PAVEL M D, MASARATI P, GENNARETTI M, et al. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings-A design perspective[J]. Progress in Aerospace Sciences, 2015, 76:55-89. [28] PAVEL M D, JUMP M, DANG-VU B, et al. Adverse rotorcraft pilot couplings-Past, present and future challenges[J]. Progress in Aerospace Sciences, 2013, 62:1-51. [29] HESS R A. Modeling human pilot adaptation to flight control anomalies and changing task demands[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3):655-666. [30] CAMERON N, WHITE M D, CUNLIFFE C, et al. Further assessment of a scalogram-based PIO metric using university of Liverpool tilt rotor simulation data[C]//2018 AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018:1017. [31] KLYDE D H, SCHULZE P C, MELLO R S F D, et al. Assessment of a scalogram-based pilot-induced oscillation metric with flight-test and simulation data[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(11):2058-2072. [32] LAMPTON A K, KLYDE D H, LEE D, et al. Development of the SAFE-cue system component mechanizations for loss of control mitigation[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2014 [33] KLYDE D H, SCHULZE P C, MELLO R S, et al. Assessment of a scalogram-based PIO metric with flight test data[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2017 [34] 张程, 谭文倩, 屈香菊, 等. 一种基于小波分析的时变飞行品质准则[J]. 飞行力学, 2019, 37(2):7-11. ZHANG C, TAN W Q, QU X J, et al. A time-varying flying qualities criterion based on wavelet analysis[J]. Flight Dynamics, 2019, 37(2):7-11(in Chinese). [35] 谭文倩, 屈香菊. 人机系统与飞行品质[M]. 北京:北京航空航天大学出版社, 2020:187-190. TAN W Q, QU X J. Man-machine system and flying quality[M]. Beijing:Beijing University Press, 2020:187-190(in Chinese). [36] XU S T, TAN W Q, QU X J, et al. Prediction of nonlinear pilot-induced oscillation using an intelligent human pilot model[J]. Chinese Journal of Aeronautics, 2019, 32(12):2592-2611. |