1 |
ZHAO Y, GUO Q, LIN T, et al. A review of recent literature on icing phenomena: Transport mechanisms, their modulations and controls[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120074.
|
2 |
Aircraft icing handbook[M]. Lower Hutt: Civil Aviation Authority, 2000: 2-20.
|
3 |
FAA. Airworthiness standards: FAR Part 25 [S]. Washington, D.C.: Federal Aviation Administration, USA, 2016.
|
4 |
刘根林, 沈海军. 飞机防冰与除冰技术综述[J]. 江苏航空, 2003(4):18-20.
|
|
LIU G L, SHEN H J. Overview of anti-icing and de-icing techniques for aircraft[J]. Jiangsu Aviation, 2003(4):18-20 (in Chinese).
|
5 |
THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854.
|
6 |
BLANDING D. Subsystem design and integration for the more electric aircraft[C]∥ 5th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston: AIAA, 2007.
|
7 |
钱梦霜. 石墨烯电加热除冰系统研究[D]. 南京: 南京航空航天大学, 2018.
|
|
QIAN M S. Research on electro-thermal deicing system based on graphene heating film[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
|
8 |
MARIOLI-RIGA Z P, TSAMASPHYROS G J, KAN-DERAKIS G N. Design of emergency aircraft repairs using composite patches[J]. Mechanics of Composite Materials and Structures, 2001, 8(3): 199-204.
|
9 |
ELALDI F, ELALDI P. A study on curing processes and environmental effects for rapid composite repair[J]. Journal of Reinforced Plastics and Composites, 2011, 30(9): 749-755.
|
10 |
LI H C H, WANG J, BAKER A. Rapid composite bonded repair for helicopter tail drive shafts[J]. Composites Part B: Engineering, 2012, 43(3): 1579-1585.
|
11 |
刘元海, 邱实. 飞机金属结构胶接修理前的原位表面处理技术研究[J]. 装备环境工程, 2016, 13(3): 134-139.
|
|
LIU Y H, QIU S. In-situ surface treatment technology applied in bonding-repair of aircraft structure[J]. Equipment Environmental Engineering, 2016, 13(3): 134-139 (in Chinese).
|
12 |
AKHTAR N, ANEMONE G, FARIAS D, et al. Fluorinated graphene provides long lasting ice inhibition in high humidity[J]. Carbon, 2019, 141: 451-456.
|
13 |
REDONDO O, PROLONGO S G, CAMPO M, et al. Anti-icing and de-icing coatings based Joule’s heating of graphene nanoplatelets[J]. Composites Science and Technology, 2018, 164: 65-73.
|
14 |
何新民, 张婷, 陈飞, 等. 石墨烯在复合热电材料中的应用[J]. 化学进展, 2018, 30(4): 439-447.
|
|
HE X M, ZHANG T, CHEN F, et al. Applications of graphene in composite thermoelectric materials[J]. Progress in Chemistry, 2018, 30(4): 439-447 (in Chinese).
|
15 |
VERTUCCIO L, DE SANTIS F, PANTANI R, et al. Effective de-icing skin using graphene-based flexible heater[J]. Composites Part B: Engineering, 2019, 162: 600-610.
|
16 |
BA H, TRUONG-PHUOC L, ROMERO T, et al. Lightweight, few-layer graphene composites with improved electro-thermal properties as efficient heating devices for de-icing applications[J]. Carbon, 2021, 182: 655-668.
|
17 |
KARPEN N, DIEBALD S, DEZITTER F, et al. Propeller-integrated airfoil heater system for small multirotor drones in icing environments: Anti-icing feasibility study[J]. Cold Regions Science and Technology, 2022, 201: 103616.
|
18 |
马莉娅, 熊联友, 刘立强, 等. 用于碳纤维复合材料的电热除冰技术实验研究[J]. 航空学报, 2012, 33(1): 54-61.
|
|
MA L Y, XIONG L Y, LIU L Q, et al. Experimental study on electro-thermal deicing technique for carbon fiber composite[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 54-61 (in Chinese).
|
19 |
田甜, 王渊, 陶明杰, 等. 石墨烯复合材料电热除冰实验研究[J]. 科学技术与工程, 2019, 19(28): 390-395.
|
|
TIAN T, WANG Y, TAO M J, et al. Experimental study on electro-thermal de-icing of graphene composites[J]. Science Technology and Engineering, 2019, 19(28): 390-395 (in Chinese).
|
20 |
彭兰清, 卫建勋, 陈诺, 等. 基于超疏水表层的石墨烯电热除冰实验研究[J]. 科学技术与工程, 2021, 21(15): 6513-6518.
|
|
PENG L Q, WEI J X, CHEN N, et al. Experimental study on graphene electrothermal deicing based on superhydrophobic surface[J]. Science Technology and Engineering, 2021, 21(15): 6513-6518 (in Chinese).
|
21 |
刘代军, 陈亚莉. 用于波音787的新型复合材料机翼除冰系统[J]. 航空制造技术, 2009, 52(17): 82-83.
|
|
LIU D J, CHEN Y L. Application of new type of composite wing deicing system in boeing 787[J]. Aeronautical Manufacturing Technology, 2009, 52(17): 82-83 (in Chinese).
|
22 |
DE ROSA F, ESPOSITO A. Electrically heated composite leading edges for aircraft anti-icing applications[J]. Fluid Dynamics & Materials Processing, 2012, 8(1): 107-128.
|
23 |
WRIGHT W. Validation results for LEWICE 3.0[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
|