[1] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2018:387-395. [2] ZIMEK A, SCHUBERT E, KRIEGEL H P. A survey on unsupervised outlier detection in high-dimensional numerical data[J]. Statistical Analysis and Data Mining:The ASA Data Science Journal, 2012, 5(5):363-387. [3] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection:A review[DB/OL]. arXiv preprint:2007.02500,2020. [4] SANCHEZ F, PANKARTZ C, LINDXHOLM D M, et al. WebTCAD:A tool for Ad-hoc visualization and analysis of telemetry data for multiple missions[C]//2018 SpaceOps Conference. Paris:SpaceOps, 2018:2616. [5] FUERTES S, PICART G, TOURNERET J Y, et al. Improving spacecraft health monitoring with automatic anomaly detection techniques[C]//14th International Conference on Space Operations. Daejeon:SpaceOps, 2016:2430. [6] LI Z, ZHAO Y, LIU R, et al. Robust and rapid clustering of KPIs for large-scale anomaly detection[C]//2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). New York:IEEE Press, 2018:1-10. [7] YU G, CAI Z, WANG S, et al. Unsupervised online anomaly detection with parameter adaptation for KPI abrupt changes[J]. IEEE Transactions on Network and Service Management, 2019, 17(3):1294-1308. [8] PARK D, KIM H, HOSHI Y, et al. A multimodal execution monitor with anomaly classification for robot-assisted feeding[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2017:5406-5413. [9] RODRIGUEZ A, BOURNE D, MASON M, et al. Failure detection in assembly:Force signature analysis[C]//2010 IEEE International Conference on Automation Science and Engineering. Piscataway:IEEE Press, 2010:210-215. [10] GUPTA M, GAO J, AGGARWAL C C, et al. Outlier detection for temporal data:A survey[J]. IEEE Transactions on Knowledge and data Engineering, 2013, 26(9):2250-2267. [11] REN H, XU B, WANG Y, et al. Time-series anomaly detection service at microsoft[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2019:3009-3017. [12] LI D, CHEN D, JIN B, et al. MAD-GAN:Multivariate anomaly detection for time series data with generative adversarial networks[C]//International Conference on Artificial Neural Networks. Berlin:Springer, 2019:703-716. [13] ERGEN T, KOZAT S S. Unsupervised anomaly detection with LSTM neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(8):3127-3141. [14] AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262:134-147. [15] YOON S, LEE J G, LEE B S. NETS:Extremely fast outlier detection from a data stream via set-based processing[J]. Proceedings of the VLDB Endowment, 2019, 12(11):1303-1315 [16] MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[DB/OL]. arXiv preprint:1607.00148,2016. [17] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//International Conference on Learning Representations. Vancouver:ICLR, 2018. [18] SCHAFER J L, GRAHAM J W. Missing data:Our view of the state of the art[J]. Psychological Methods, 2002, 7(2):147. [19] GARCIA-LAENCINA P J, SANCHO-GOMEZ J L, FIGUEIRAS-VIDAL A R. Pattern classification with missing data:A review[J]. Neural Computing and Applications, 2010, 19(2):263-282. [20] KREINDLER D M, LUMSDEN C J. The effects of the irregular sample and missing data in time series analysis[J]. Nonlinear Dynamics, Psychology, and Life Sciences, 2012, 135(2):187-214. [21] MONDAL D, PERCIVAL D B. Wavelet variance analysis for gappy time series[J]. Annals of the Institute of Statistical Mathematics, 2010, 62(5):943-966. [22] REHFELD K, MARWAN N, HEITZIG J, et al. Comparison of correlation analysis techniques for irregularly sampled time series[J]. Nonlinear Processes in Geophysics, 2011, 18(3):389-404. [23] WHITE I R, ROYSTON P, WOOD A M. Multiple imputation using chained equations:Issues and guidance for practice[J]. Statistics in Medicine, 2011, 30(4):377-399. [24] CHE Z, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8(1):1-12. [25] KINGMA D P, WELLING M. Auto-encoding variational bayes[DB/OL]. arXiv preprint:1312.6114,2013. [26] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1):1-18. [27] SIFFER A, FOUQUE P A, TERMIER A, et al. Anomaly detection in streams with extreme value theory[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017:1067-1075. [28] MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder-decoder for multisensory anomaly detection[DB/OL]. arXiv preprint:1607.00148, 2016. |