[1] Hojnacki J T. Ramjet engine fuel injection studies: DTIC document[R]. AD0754852, 1972.[2] Wotel G J, Gallagher K E, Caron S D, et al. High speed turbo ramjet combustor technology program, Volume 1: Final Report, WL-TR-91-2043[R]. 1991.[3] Yates C L. Liquid injection into a supersonic stream: DTIC document, AD0741887[R]. 1972.[4] Lefebvre A H, Ballal D R, Bahr D W. Gas turbine combustion: alternative fuels and emissions[M]. Boca Raton, FL: CRC Press, 2010.[5] Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008. (in Chinese) 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.[6] Foust M J, Thomsen D, Stickles R, et al. Development of the GE aviation low emissions TAPS combustorfor next generation aircraft engines[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.[7] Lazik W, Doerr Th, Bake S, et al. Development of lean-burn low-NOx combustion technology at rolls-royce deutschland[C]//Proceedings of the ASME Turbo Expo, 2008, 3(PART): 797-807.[8] Fric T F. Effects of fuel-air unmixedness on NO(x) emissions[J]. Journal of Propulsion and Power, 1995, 9(5): 708-713.[9] Lyons V J. Fuel/air nonuniformity-effect on nitric oxide emissions[C]//Proceedings of the 19th Aerospace Sciences Meeting, 1981.[10] Mello J P, Mellor A M, Steele R C, et al. A study of the factors affecting NO(x) emissions in lean premixed turbine combustors[C]//Proceedings of the 33rd Joint Propulsion Conference and Exhibit, 1997.[11] Barnes J C, Mellor A M. Effects of unmixedness in piloted-lean premixed gas-turbine combustors[J]. Journal of Propulsion and Power, 1998, 14(6): 967-973.[12] Mello J P, Mellor A M. Modeling NO(x) emissions from lean-premixed turbine combustors with swirling, non-uniform fuel/air mixtures[C]//Proceedings of the 35th Joint Propulsion Conference and Exhibit, 1999.[13] Frazier T R, Foglesong R E, Coverdill R E, et al. An experimental investigation of fuel/air mixing in an optically accessible axial premixer[C]//Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.[14] Lefebvre A H. Atomization and sprays[M]. NewYork: Hemisphere Press, 1989.[15] Gan X H. Aero gas turbine engine fuel nozzle technology[M]. Beijing: National Defense Industry Press, 2006. (in Chinese) 甘晓华. 航空燃气轮机燃油喷嘴技术[M]. 北京: 国防工业出版社, 2006.[16] Wu P K, Kirkendall K A, Fuller R P, et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power, 1997, 13(1): 64-73.[17] Huang Y, Lin Y Z, Fan W J, et al. Combustion and combustor[M]. Beijing: Beihang University Press, 2009. (in Chinese) 黄勇, 林宇震, 樊未军, 等. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社, 2009.[18] Less D M, Schetz J A. Transient behavior of liquid jets injected normal to a high-velocity gas stream[J]. AIAA Journal, 1986, 24(12): 1979-1986.[19] Inamura T, Nagai N, Watanabe T, et al. Disintegration of liquid and slurry jets traversing subsonic air streams[C]//Proceedings of the Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, 1993.[20] Mazallon J, Dai Z, Faeth G. Aerodynamic primary breakup at the surface of nonturbulent round liquid jets in crossflow[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.[21] Sallam K A, Aalburg C, Faeth G M. Primary breakup of round nonturbulent liquid jets in gaseous crossflows[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, 2003.[22] Birouk M, Azzopardi B J, Stäbler T. Primary break-up of a viscous liquid jet in a cross airflow[J]. Particle & Particle Systems Characterization, 2003, 20(4): 283-289.[23] Lubarsky E, Shcherbik D, Bibik O, et al. Fuel jet in cross flow[C]//Experimental study of spray characteristics.Proceedings of the 23rd Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), 2011.[24] Gopala Y, Lubarsky E, Zinn B T. Liquid jet in crossflow-a novel method to locate the column breakup point[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.[25] Lakhamraju R R. Liquid jet breakup studies in subsonic airstream at elevated temperatures. Cincinnati, OH: Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, 2005.[26] Bellofiore A. Experimental and numerical study of liquid jets injected in high-density air crossflow. Naples: Università degli Studi di Napoli Federico Ⅱ, 2007.[27] Wang Q, Mondragon U M, Brown C T, et al. Characterization of trajectory, break point, and break point dynamics of a plain liquid jet in a crossflow[J]. Atomization and Sprays, 2011, 21(3): 203-219.[28] Lee K, Aalburg C, Diez F J, et al. Primary breakup of turbulent round liquid jets in uniform crossflows[J]. AIAA Journal, 2007, 45(8): 1907-1916.[29] Sallam K A, Ng C, Sankarakrishnan R, et al. Breakup of turbulent and non-turbulent liquid jets in gaseous crossflows[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.[30] Anu O, Khaled S. Effect of nozzle length/diameter ratio on the breakup of round liquid jets in crossflow[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.[31] Osta A R, Sallam K A. Nozzle-geometry effects on upwind-surface properties of turbulent liquid jets in gaseous crossflow[J]. Journal of Propulsion and Power, 2010, 26(5): 936-946.[32] Reiche J R, Gopala Y, Lubarsky O, et al. Liquid fuel jet in crossflow-comparison between sharp edged and smooth injection orifice[C]//Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007.[33] Fuller R P, Wu P, Kirkendall K A, et al. Effects of injection angle on the breakup processes of liquid jets in subsonic crossflows[C]//Proceedings of the 33rd Joint Propulsion Conference and Exhibit, 1997.[34] Costa M, Melo M J, Sousa M, et al. Spray characteristics of angled liquid injection into subsonic crossflows[J]. AIAA Journal, 1997, 44(3): 646-653.[35] Chigier N, Farago Z. Morphological classification of disintegration of round liquid jets in a coaxial air stream[J]. Atomization and Sprays, 1992, 2(2): 137-153.[36] Leong M I, Vincent G M, Scott G S. Mixing of anairblast-atomized fuel spray injected into a crossflow of air, NASA/CR-2000-210467[R]. 2000.[37] Zhu Y, Huang Y, Wang F, et al. Experiment on the breakup of round liquid jets in cross airflows[J]. Journal of Aerospace Power, 2010, 25(10): 2261-2266. (in Chinese) 朱英, 黄勇, 王方, 等. 横向气流中的液体圆形射流破碎实验[J]. 航空动力学报, 2010, 25(10): 2261-2266.[38] Zhu Y, Huang Y, Wang F, et al. Experiment on breakup processes and surface waves of round liquidjets in crossflows[C]//Proceedings of ASME Turbo Expo, 2010.[39] Wang X H, Huang Y, Wang F, et al. Bag breakup of round liquid jets in crossflow[J]. Journal of Aerospace Power, 2012, 27(9): 1979-1987. (in Chinese) 王雄辉, 黄勇, 王方, 等. 横向气流中液体圆柱射流的破碎特性和表面波现象[J]. 航空动力学报, 2012, 27(9): 1979-1987.[40] Wang S L, Huang Y, Wang F, et al. On the breakup process of round liquid jets in gaseous crossflows at low Weber number[C]//Proceedings of ASME Turbo Expo, 2013.[41] Xu S L, Archer R D, Milton B E, et al. Experimental investigation on unsteady transverse injection of kerosene into a supersonic flow[J]. Acta Aerodynamica Sinica, 2000, 18(3): 272-279. (in Chinese) 徐胜利, Archer R D, Milton B E, 等. 煤油在超声速气流中非定常横向喷射的实验观察[J]. 空气动力学学报, 2000, 18(3): 272-279.[42] Xu S L, Archer R D, Milton B E, et al. Realization of transverse injection of kerosene into a supersonic flow[J]. Science in China (Series E), 2000, 30(2): 179-186. (in Chinese) 徐胜利, Archer R D, Milton B E, 等. 煤油在超声速气流中横向喷射的实现[J]. 中国科学(E辑), 2000, 30(2): 179-186.[43] Xu S L, Archer R D, Milton B E, et al. Unsteady transverse injection of kerosene into a supersonic flow[J]. Science in China Series E:Technological Sciences, 2000, (2): 206-214.[44] Xu S L, Yue P T, Archer R D, et al. Experimental study on the unsteady transverse injection of diesel into a subsonic and supersonic flow[J]. Journal of Combustion Science and Technology, 2000, 6(2): 101-106. (in Chinese) 徐胜利, 岳朋涛, Archer R D, 等. 柴油在亚、超声速气流中横向喷射实验研究[J]. 燃烧科学与技术, 2000, 6(2): 101-106.[45] Xu S L, Yue P T, Sun Y Y, et al. Three dimensional numerical simulation of atomized fuels injected into a supersonic flow[J]. Chinese Journal of Applied Mechanics, 2000, 17(2): 19-23. (in Chinese) 徐胜利, 岳朋涛, 孙英英, 等. 超声速气流中雾化燃料喷射的三维数值研究[J]. 应用力学学报, 2000, 17(2): 19-23.[46] Liu J. Numerical and experimental investigation of fuel spray in supersonic cross flow[D]. Beijing: School of Astronautics, Beihang University, 2010. (in Chinese) 刘静. 超声速气流中横向燃油喷雾的数值模拟和实验研究[D]. 北京:北京航空航天大学宇航学院, 2010.[47] Liu J, Wang L, Zhang J, et al. Experimental and numerical simulation of atomization of liquid jet in supersonic cross flow[J]. Journal of Aerospace Power, 2008, 23(4): 724-729. (in Chinese) 刘静, 王辽, 张佳, 等. 超声速气流中横向射流雾化实验和数值模拟[J]. 航空动力学报, 2008, 23(4): 724-729.[48] Liu J, Xu X. The research development of liquid jet atomization in high speed cross flow[J]. Advances in Mechanics, 2009, 39(3): 273-283. (in Chinese) 刘静, 徐旭. 高速气流中横向液体射流雾化研究进展[J]. 力学进展, 2009, 39(3): 273-283.[49] Hinze J. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295.[50] Krzeczkowski S A. Measurement of liquid droplet disintegration mechanisms[J]. International Journal of Multiphase Flow, 1980, 6(3): 227-239.[51] Samuelsen G, Eastes T. Secondary atomization by high amplitude pressure waves[C]//Proceedings of the 28th Joint Propulsion Conference and Exhibit, 1992.[52] Park S W, Kim S, Lee C S. Breakup and atomization characteristics of mono-dispersed diesel droplets in a cross-flow air stream[J]. International Journal of Multiphase Flow, 2006, 32(7): 807-822.[53] Wang X H, Huang Y, Wang F, et al. Bag breakup of round liquid jets in crossflow[J]. Journal of Propulsion Technology, 2012, 33(2): 198-204. (in Chinese) 王雄辉, 黄勇, 王方, 等. 横向气流中液体射流袋式破碎机理[J]. 推进技术, 2012, 33(2): 198-204.[54] Wang X H, Huang Y, Wang S L, et al. Bag breakup of turbulent liquid jets in crossflows[J]. AIAA Journal, 2012, 50(6): 1360-1366.[55] Elshamy O M. Experimental investigations of steady and dynamic behavior of transverse liquid jets[D]. Cincinnati, OH: Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, 2007.[56] Gopala Y, Zhang P, Bibik O, et al. Liquid fuel jet in crossflow-trajectory correlations based on the column breakup point[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forumand Aerospace Exposition, 2010.[57] Stenzler J N, Lee J G, Santavicca D A, et al. Penetration of liquid jets in a crossflow[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, 2003.[58] Li L, Lin Y Z, Xue X, et al. Injection of liquid kerosene into a high-pressure subsonic air crossflow from normal temperature to elevated temperature[C]//Proceedings of the ASME Turbo Expo, 2012.[59] Xue X, Gao W, Xu Q H, et al. Injection of subcritical and supercritical aviation kerosene into a high-temperature and high-pressure crossflow[C]//Proceedings of the ASME Turbo Expo, 2011.[60] Soo-Young N. Empirical correlations for penetration height of liquid jet in cross flow-a review[C]//Proceedings of the 24th Annual Conference on Liquid Atomization and Spray Systems, 2011.[61] Wu P K, Kirkendall K A, Fuller R P, et al. Breakup processes of liquid jets in subsonic crossflows[C]//Proceedings of the 32nd Joint Propulsion Conference and Exhibit, 1996.[62] Wu P K, Kirkendall K A, Fuller R P, et al. Spray structures of liquid fuel jets atomized in subsonic crossflows[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.[63] Ragucci R, Bellofiore A, Cavaliere A. Breakup and breakdown of bent kerosene jets in gas turbine conditions[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2231-2238.[64] Yong Seok H, Yu In J. The penetration characteristics of normally injected kerosene liquid jet in high Weber number flow[C]//Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009.[65] Chen T H, Smith C R, Schommer D G, et al.Multi-zone behavior of transverse liquid jet in high-speed flow[C]//Proceedings of the 31st AIAA Aerospace Sciences Meeting and Exhibit, 1993.[66] Masuda B J, McDonell V G. Penetration of a recessed distillate liquid jet into a crossflow at elevated pressure and temperature[C]//Proceedings of 10th International Conference on Liquid Atomization and Spray System, 2006.[67] Birouk M, Iyogun C O, Popplewell N. Role of viscosity on trajectory of liquid jets in a cross-airflow[J]. Atomization and Sprays, 2007, 17(3): 267-287.[68] Bellofiore A, Cavaliere A, Ragucci R. Air density effect on the atomization of liquid jets in crossflow[J]. Combustion Science and Technology, 2007, 179(1-2): 319-342.[69] Amighi A, Eslamian M, Ashgriz N. Trajectory of a liquid jet in high pressure and high temperature subsonic air crossflow[C]//Proceedings of the ICLASS, 2009.[70] Tambe S B, Jeng S, Mongia H, et al. Liquid jets in subsonic crossflow[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.[71] Lakhamraju R R, Jeng S M. Liquid jet breakup studies in subsonic air stream at elevated temperatures[C]//Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), 2005.[72] Yoon H J, Hong J G, Lee C. Correlations for penetration height of single and double liquid jets in cross flow under high-temperature conditions[J]. Atomization and Sprays, 2011, 21(8): 673-686.[73] Bunce K, Lee J G, Santavicca D A. Characterization of liquid jets-in-crossflow under high temperature, high velocity non-oscillating and oscillating flow conditions[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.[74] Elshamy O M, Tambe S B, Cai J, et al. Excited liquid jets in subsonic crossflow[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.[75] Lee I C, Kang Y S, Moon H J, et al. Spray jet penetration and distribution of modulated liquid jetsin subsonic cross-flows[J]. Journal of Mechanical Science and Technology, 2010, 24(7): 1425-1431.[76] Tambe S, Elshamy O, Jeng S. Liquid jets injected transversely into a shear layer[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.[77] Tambe S B. Liquid jets injected into non-uniform crossflow. Cincinnati, OH: Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, 2010.[78] Ghosh S, Hunt J C R. Spray jets in a cross-flow[J]. Journal of Fluid Mechanics, 1998, 365(1): 109-136.[79] Leong M Y, McDonell V G, Samuelsen G S. Effect of ambient pressure on an airblast spray injected into a crossflow[J]. Journal of Propulsion and Power, 2001, 17(5): 1076-1084.[80] Lee I, Kang Y S, Koo J. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow[J]. Journal of Thermal Science, 2010, 19(2): 136-140.[81] Oda T, Hiroyasu H, Arai M, et al. Characterization of liquid jet atomization across a high-speed airstream[J]. JSME International Journal Series B, Fluids and Thermal Engineering, 1994, 37(4): 937-944.[82] Inamura T, Nagai N. Spray characteristics of liquid jet traversing subsonic airstreams[J]. Journal of Propulsion and Power, 1997, 13(2): 250-256.[83] Kihm K D, Lyn G, Son S. Atomization of cross-injecting sprays into convective air stream[J]. Atomization and Sprays, 1995, 5(4): 417-434.[84] Lubarsky E, Reichel J R, Zinn B T, et al. Spray in crossflow: dependence on Weber number[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(2): 021501-1-9.[85] Leong M, McDonell V, Samuelsen G. Effect of ambient pressure on an airblast spray injected into a crossflow[C]//Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.[86] Becker J, Hassa C. Liquid fuel placement and mixing of generic aeroengine premix module at different operating conditions[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(4): 901-908.[87] Becker J, Heitz D, Hassa C. Spray dispersion in acounter-swirling double-annular air flow at gas turbine conditions[J]. Atomization and Sprays, 2004, 14(1): 15-35.[88] Masuda B J, McDonell V G, Oskam G W. Mixing of a plain jet into a swirling crossflow[C]//Proceedings of the 21st Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), 2008.[89] Tambe S B, Jeng S M. A study of liquid jets injected transversely into a swirling crossflow[C]//Proceedings of 21st Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), 2008.[90] Tambe S B, Jeng S M. Three-dimensional penetration and velocity distribution of liquid jets injected transversely into a swirling crossflow[C]//Proceedings of the 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), 2010.[91] Yang M L, Gu S J, Li X Y. Study on two-phase fuel distributions in high-speed hot transverse air stream[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(3): 485-490.[92] Yang M L, Gu S J, Liu G E, et al. Trajectory with diffusion method for predicting the fuel distribution in a transverse stream[C]//Proceedings of the 21st Aerospace Sciences Meeting, 1983.[93] Zhang H B, Liu L, Sun H J, et al. Study on single-nozzle spray pattern in crossflow and two-phase mixing characteristics[J]. Journal of Xi’an Jiaotong University, 2010, 44(7): 104-108. (in Chinese) 张海滨, 刘利, 孙慧娟, 等. 横流中单喷嘴雾化形态与两相掺混特性研究[J]. 西安交通大学学报, 2010, 44(7): 104-108.[94] Bai B F, Zhang H B, Liu L, et al. Experimental study on turbulent mixing of spray droplets in crossflow[J]. Experimental Thermal and Fluid Science, 2009, 33(6): 1012-1020. |